Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2018, Vol. 44 ›› Issue (05): 723-736.doi: 10.3724/SP.J.1006.2018.00723

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Identification of Sugarcane Varieties by AFLP and SSR Markers and Its Application

Zhou-Tao WANG, Qian YOU, Shi-Wu GAO, Chun-Feng WANG, Zhu LI, Jing-Jing MA, You-Xiong QUE, Li-Ping XU, Jun LUO*()   

  1. Key Laboratory of Sugarcane Biology and Genetic Breeding (Fujian), Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
  • Received:2017-10-13 Accepted:2018-03-15 Online:2018-05-20 Published:2018-03-16
  • Contact: Jun LUO E-mail:sisluojun@126.com
  • Supported by:
    This study was supported by China Agriculture Research System (CARS-17) and the Program of Introducing International Super Agricultural Science and Technology (948 Program) (2014-S18).

Abstract:

Genetic diversity and fingerprint of varieties are crucial reference for breeding, cultivar right protection and new cultivar extension. We used nine pairs of AFLP markers and 15 pairs of SSR markers to scan 38 new sugarcane varieties (lines) from the national variety regional testings, obtaining abundant fingerprint data. Among the total 348 AFLP bands, 248 were polymorphic, with a polymorphism rate of 72.26 %. In addition, among the total 180 SSR bands, 176 were polymorphic, with a polymorphism rate of 97.78 %. The genetic similarity coefficients of these 38 new varieties (lines) were distributed from 0.668 to 0.847. We explored the distribution characteristics of genetic similarity coefficients using the boxplot, observing the genetic basis of five series (FN, MT, YZ, YG, and GT) of the 38 new sugarcane varieties (lines) was approximately similar. The clustering analysis manifested that these 38 new sugarcane varieties (lines) were divided into two groups at the genetic similarity coefficient of 0.732, with a subgroup including FN09-2201 and GT06-1492 that had high heterogeneity. Moreover, there was a small subgroup containing ROC22 at the genetic similarity coefficient of 0.770. Except for ROC22, the subgroup also contained FN 07-3206, FN 40, HZ 22, GT 09-12, and LC 07-150. ROC22 has wide adaptability, high yield, high sugar content and other excellent characteristics, other varieties (lines) in the same subgroup should be more likely to have these excellent characteristics and higher extention potential. Finally, through selection of 60 efficient amplification sites in the identification of SSR markers, we constructed the fingerprints of these 38 new sugarcane varieties (lines), which should play an important role in variety identification and variety protection. This study is expected to be directly applied to guide the genetic diversity assessment and molecular fingerprinting identification of sugarcane germplasm, and also to provide references for the extention and layout of these varieties or their utilization as hybrid parents.

Key words: sugarcane, molecular marker, germplasm identification, group division, variety extension

Supplementary table 1

Thirty-eight sugarcane varieties (lines) from three rounds of national variety regional testings"

编号
No.
品种(系)
Variety (line)
亲本组合
Parent combination
选育单位
Breeding institution
参试轮次
Round
系列
Series
1 福农07-2020
Funong 07-2020
粤糖91-976 × LC 85-384
Yuetang 91-976 × LC 85-384
福建农林大学甘蔗综合研究所
SIFAFU
10 FN
2 福农07-3206
Funong 07-3206
90-1211 × 77-797 福建农林大学甘蔗综合研究所
SIFAFU
10 FN
3 福农40
Funong 40
福农93-3406 × 粤糖91-976
Funong 93-3406 × Yuetang 91-976
福建农林大学甘蔗综合研究所
SIFAFU
10 FN
4 福农09-2201
Funong 09-2201
ROC 22 × 桂糖00-122
ROC 22 × Guitang 00-122
福建农林大学甘蔗综合研究所
SIFAFU
11 FN
5 福农09-7111
Funong 09-7111
桂糖96-44 × ROC 11
Guitang 96-44 × ROC 11
福建农林大学甘蔗综合研究所
SIFAFU
11 FN
6 福农09-12206
Funong 09-12206
CP 65-357 × 崖城97-40
CP 65-357 × Yacheng 97-40
福建农林大学甘蔗综合研究所
SIFAFU
12 FN
7 福农11-2105
Funong 11-2105
川蔗89-103 × 云瑞05-770
Chuanzhe 89-103 × Yunrui 05-770
福建农林大学甘蔗综合研究所
SIFAFU
12 FN
8 福农09-4095
Funong 09-4095
粤糖93-159 × 云蔗91-790
Yuetang 93-159 × Yunzhe 91-790
福建农林大学甘蔗综合研究所
SIFAFU
12 FN
9 闽糖06-1405
Mintang 06-1405
闽糖92-649 × ROC 10
Mintang 92-649 × ROC 10
福建省农业科学院甘蔗研究所
SRIFAAS
11 MT
10 闽糖07-2005
Mintang 07-2005
崖城73-512 × ROC 22
Yacheng 73-512 × ROC 22
福建省农业科学院甘蔗研究所
SRIFAAS
12 MT
11 闽糖09-104
Mintang 09-104
桂糖90-420 × ROC 10
Guitang 90-420 × ROC 10
福建省农业科学院甘蔗研究所
SRIFAAS
12 MT
编号
No.
品种(系)
Variety (line)
亲本组合
Parent combination
选育单位
Breeding institution
参试轮次
Round
系列
Series
12 闽糖02-205
Mintang 02-205
崖城90-3 × ROC 10
Yacheng 90-3 × ROC 10
福建省农业科学院甘蔗研究所
SRIFAAS
10 MT
13 云蔗08-2060
Yunzhe 08-2060
粤糖93-159 × Q 121
Yuetang 93-159 × Q 121
云南省农业科学院甘蔗研究所
SRIYAAS
10 YZ
14 云蔗08-1095
Yunzhe 08-1095
CP 84 -1198 × 科5
CP 84-1198 × Ke5
云南省农业科学院甘蔗研究所
SRIYAAS
11 YZ
15 云蔗09-1028
Yunzhe 09-1028
云瑞15-178 × 闽糖86-2121
Yunrui 15-178 × Mintang 86-2121
云南省农业科学院甘蔗研究所
SRIYAAS
12 YZ
16 云蔗09-1601
Yunzhe 09-1601
CP 94-1100 × 川糖89-103
CP 94-1100 × Chuantang 89-103
云南省农业科学院甘蔗研究所
SRIYAAS
12 YZ
17 云瑞09-315
Yunrui 09-315
CL 69-52 × 云瑞05-285
CL 69-52 × Yunrui 05-285
云南省农业科学院甘蔗研究所
SRIYAAS
12 YZ
18 云瑞07-1433
Yunrui 07-1433
云瑞99-155 × L 75-20
Yunrui 99-155 × L75-20
云南省农业科学院甘蔗研究所
SRIYAAS
10 YZ
19 云瑞10-187
Yunrui 10-187
ROC 20 × 云瑞05-282
ROC20 × Yunrui 05-282
云南省农业科学院甘蔗研究所
SRIYAAS
12 YZ
20 云瑞10-701
Yunrui 10-701
云瑞08-18 × 云瑞05-704
Yunrui 08-18 × Yunrui 05-704
云南省农业科学院甘蔗研究所
SRIYAAS
12 YZ
21 德蔗07-36
Dezhe 07-36
桂糖92-66 × CP 67-412
Guitang 92-66 × CP 67-412
云南德宏州甘蔗科学研究所
SRIDY
11 DZ
22 德蔗09-78
Dezhe 09-78
桂糖94-119 × ROC 10
Guitang 94-119 × ROC 10
云南德宏州甘蔗科学研究所
SRIDY
12 DZ
23 德蔗09-84
Dezhe 09-84
桂糖94-119 × ROC 10
Guitang 94-119 × ROC 10
云南德宏州甘蔗科学研究所
SRIDY
12 DZ
24 粤甘43
Yuegan 43
粤糖93-213 × 粤糖93-159
Yuetang 93-213 × Yuetang 93-159
广州甘蔗糖业研究所
GSIRI
10 YG
25 粤甘46
Yuegan 46
粤糖00-236 × 桂糖96-211
Yuetang 00-236 × Guitang 96-211
广州甘蔗糖业研究所
GSIRI
10 YG
26 粤甘47
Yuegan 47
粤农73-204 × ROC 22
Yuenong 73-204 × ROC 22
广州甘蔗糖业研究所
GSIRI
11 YG
27 粤甘48
Yuegan 48
HOCP 95-988 × 粤糖97-76
HOCP 95-988 × Yuetang 97-76
广州甘蔗糖业研究所
GSIRI
12 YG
28 粤甘50
Yuegan 50
粤糖96-86 × 粤糖99-66
Yuetang 96-86 × Yuetang 99-66
广州甘蔗糖业研究所
GSIRI
12 YG
29 海蔗22
Haizhe 22
粤糖93-159 × ROC 22
Yuetang 93-159 × ROC 22
广州甘蔗糖业研究所
GSIRI
11 YG
30 桂糖06-2081
Guitang 06-2081
桂糖00-122 × 崖城97-47
Guitang 00-122 × Yacheng 97-47
广西农业科学院甘蔗研究所
SRIGAAS
11 GT
31 桂糖08-1180
Guitang 08-1180
ROC 26 × ROC 22 广西农业科学院甘蔗研究所
SRIGAAS
11 GT
32 桂糖06-1492
Guitang 06-1492
CP 72-1210 × 湛蔗92-126
CP 72-1210 × Zhanzhe 92-126
广西农业科学院甘蔗研究所
SRIGAAS
12 GT
33 桂糖09-12
Guitang 09-12
ROC 24 × 粤农79-780
ROC 24 × Yuenong 79-780
广西农业科学院甘蔗研究所
SRIGAAS
12 GT
编号
No.
品种(系)
Variety (line)
亲本组合
Parent combination
选育单位
Breeding institution
参试轮次
Round
系列
Series
34 柳城07-500
Liucheng 07-500
粤糖92-1287 × CP 72-1210
Yuetang 92-1287 × CP 72-1210
柳城县甘蔗研究中心
SRCLC
10 LC
35 柳城07-150
Liucheng 07-150
粤糖85-177 × ROC 22
Yuetang 85-177 × ROC 22
柳城县甘蔗研究中心
SRCLC
11 LC
36 柳城07-506
Liucheng 07-506
粤糖85-177 × ROC 22
Yuetang 85-177 × ROC 22
柳城县甘蔗研究中心
SRCLC
12 LC
37 赣蔗07-538
Ganzhe 07-538
ROC 10 × CP 57-614 江西省甘蔗研究所
SRIJP
10 GZ
38 ROC 22 台湾糖业研究所
SPRIT
参照 ROC

Table 1

Nine pairs of primers used in AFLP mark"

组合
Combination
引物名
Primer name
序列
Sequence (5°-3°)
引物名
Primer name
序列
Sequence (5°-3°)
1 E-ACA GACTGCGTACCAATTC ACA M-CTG GATGAGTCCTGAGTAA CTG
2 E-ACT GACTGCGTACCAATTC ACT M-CAA GATGAGTCCTGAGTAA CAA
3 E-AAC GACTGCGTACCAATTC AAC M-CAC GATGAGTCCTGAGTAA CAC
4 E-ACT GACTGCGTACCAATTC ACT M-CAG GATGAGTCCTGAGTAA CAG
5 E-ACA GACTGCGTACCAATTC ACA M-CAC GATGAGTCCTGAGTAA CTC
6 E-ACT GACTGCGTACCAATTC ACT M-CAC GATGAGTCCTGAGTAA CAC
7 E-AAC GACTGCGTACCAATTC AAC M-CAG GATGAGTCCTGAGTAA CAG
8 E-ACT GACTGCGTACCAATTC ACT M-CTC GATGAGTCCTGAGTAA CTC
9 E-ACC GACTGCGTACCAATTC ACC M-CAG GATGAGTCCTGAGTAA CAG

Table 2

Fifteen pairs of primers used in SSR mark"

引物名
Primer name
重复单元
Repeating unit
引物序列(正/反)
Primer sequence (Positive/Reverse) (5°-3°)
退火温度
Tm (°C)
SMC334BS (TG)36 CAATTCTGACCGTGCAAAGAT/CGATGAGCTTGATTGCGAATG 60
SMC336BS (TG)23(AG)19 ATTCTAGTGCCAATCCATCTCA/CATGCCAACTTCCAAACAGAC 62
SMC286CS (TG)43 TCAAATGGGACCTTATTGGAG/TCCCTCGATCTCCGTTGTT 58
SMC569CS (TG)37 GCGATGGTTCCTATGCAACTT/TTCGTGGCTGAGATTCACACTA 62
SMC119CG (TTG)12 TTCATCTCTAGCCTACCCCAA/AGCAGCCATTTACCCAGGA 58
SMC31CUQ (TC)10(AC)22 CATGCCAACTTCCAATACAGACT/AGTGCCAATCCATCTCAGAGA 62
mSSCIR43 (GT)3(AT)2(GT)29 ATTCAACGATTTTCACGAG/AACCTAGCAATTTACAAGAG 52
SEP17 (CCT)9 ACCCTGCTGGTCTCCTCC/ACGTTCGACGTCGTGTAGTG 60
SEP23 (AGA)9 GTGTTCAGGCAGATGGTCCT/GTCGATGGCACCGATTTATT 60
SEP59 (CGG)9 TTCCATTTACTCCTCCGTGC/CTCCCCCTCCTCGTACTTGT 60
SEP6 (GCA)5(ACA)13 CAGCCCATTAACCAAGCAAT/GAAGCAGCTGTTGCTCACTG 60
SEP70 (GCG)8 AACTCACCCAACAAAGCGAC/AGACGAAGAGCTCGTGGATG 60
SEP8 (CT)17 CTTGCTTCCCCTTTACTCCC/GAGGCGCCTTACTGTTCTTG 60
SEP84 (GGT)9 AGAGACCGTAATGGTGACCG/ACCACCACCACCACCATACT 60
SEP89 (CGT)10 AGCTCTGATTTTTGGGGGTT/GGAAGACAGTGGACGAGGTC 60

Fig. 1

Polyacrylamide gel electrophoresis profile of AFLP markers"

Fig. 2

Capillary electrophoresis profile of SSR markers"

Table 3

Effectiveness evaluation of 24 pairs of primers"

标记类别
Marker sort
引物名
Primer name
多态性位点数
Number of
polymorphic loci
总扩增位点数
Total site number
多态比例
Polymorphic
percentage (%)
引物多态信息含量
PIC
SSR标记
SSR marker
(100-350 bp)
SEP6 9 9 100 0.964
SPE8 13 14 92.86 0.959
SEP17 10 10 100 0.961
SEP23 22 22 100 0.979
SEP59 10 11 90.91 0.920
SEP70 8 8 100 0.895
SEP84 5 5 100 0.695
SEP89 12 12 100 0.896
SMC334BS 10 12 83.33 0.927
SMC336BS 12 12 100 0.967
SMC286CS 20 20 100 0.961
SMC569CS 9 9 100 0.779
SMC119CG 13 13 100 0.961
SMC31CUQ 11 11 100 0.967
mSSCIR43 12 12 100 0.973
总数/平均数Total/average 176 180 97.78
标记类别
Marker sort
引物名
Primer name
多态性位点数
Number of
polymorphic loci
总扩增位点数
Total site number
多态比例
Polymorphic
percentage (%)
引物多态信息含量
PIC
AFLP标记
AFLP marker
(1-500 bp)
E-ACA/M-CTG 37 58 63.79 0.974
E-ACT/M-CAA 24 42 57.14 0.968
E-AAC/M-CAC 26 36 72.22 0.968
E-ACT/M-CAG 24 32 75.00 0.971
E-ACA/M-CAG 22 27 81.48 0.968
E-ACT/M-CAC 19 25 76.00 0.972
E-AAC/M-CAC 29 37 78.38 0.972
E-ACT/M-CTC 36 51 70.59 0.974
E-ACC/M-CAG 31 40 77.50 0.974
总数/平均数Total/average 248 348 71.26 0.971

Fig. 3

Distribution characteristics of genetic similarity coefficients The abbreviations are the same as those given in Supplementary table 1."

Fig. 4

UPGMA dendrogram of 38 new sugarcane varieties (lines) based on genetic similarity"

Fig. 5

Principal component analysis of 38 new sugarcane varieties (lines) The abbreviations are the same as those given in Supplementary table 1."

Fig. 6

Fingerprints of 38 new sugarcane varieties (lines) On the left of the Y-axis direction, 60 names of amplification loci with high specificity were listed (Those loci came from the SSR mark. The first half of the locus name is the primer name, and another half corresponds to the length of the amplified fragment). The serial numbers of the varieties (lines) were enumerated on the top of the X-axis direction. Each black or gray rectangular (distinguishes between adjacent varieties) represents an amplification band, and the white indicates no amplification band."

[1] Menhas R, Umer S, Shabbir G.Climate change and its impact on food and nutrition security in Pakistan.Iran J Public Health, 2016, 45: 549-550
pmid: 4888188
[2] Kumar M.Impact of climate change on crop yield and role of model for achieving food security.Environ Monit Assess, 2016, 188: 1-14
doi: 10.1007/s10661-015-4999-z
[3] Tiepolo M.Urbanization and food security in Niamey, Niger.Stor Urbana, 2002, 26: 29-58
pmid: 17500125
[4] Matsumoto K.Energy structure and energy security under climate mitigation scenarios in China.PLoS One, 2015, 10: e0144884
doi: 10.1371/journal.pone.0144884 pmid: 4684348
[5] Luo J, Pan Y B, Xu L P, Grisham M P, Zhang H, Que Y X.Rational regional distribution of sugarcane cultivars in China.Sci Rep, 2015, 5: 15721
doi: 10.1038/srep15721 pmid: 26499905
[6] Que Y X, Pan Y B, Lu Y H, Yang C, Yang Y T, Huang N, Xu L P.Genetic analysis of diversity within a Chinese local sugarcane germplasm based on start codon targeted polymorphism.Biomed Res Int, 2014, (5): 468375
doi: 10.1155/2014/468375 pmid: 24779012
[7] 袁隆平. 杂交水稻超高产育种. 杂交水稻, 1997, 12(6): 1-3
Yuan L P.Hybrid rice breeding for super high yield.Hybrid Rice, 1997, 12(6): 1-3 (in Chinese with English abstract)
[8] Tang S X, Wei X H, Javier E L.Introduction and utilization of INGER rice germplasm in China.Agric Sci China, 2004, 3: 561-567
[9] Erskine W, Muehlbauer F J.Allozyme and morphological variability, outcrossing rate and core collection formation in lentil germplasm.Theor Appl Genet, 1991, 83: 119-125
doi: 10.1007/BF00229234 pmid: 24202265
[10] Nayak S, Naik P K, Acharya L, Mukherjee A K, Panda P C, Das P.Assessment of genetic diversity among 16 promising cultivars of ginger using cytological and molecular markers.Z Naturforsch C, 2005, 60: 485-492
doi: 10.1038/ncprheum0465 pmid: 16047412
[11] Wang C L, Singh D, Mitra S K.Biochemical markers: A useful tool for assessing genetic diversity in jackfruit (Artocarpus heterophyllus Lam.). Acta Hortic, 2011, 890: 91-101
[12] Li H, Cao S Y, Niu J, Yuan P, Zhao D.The types and application of molecular markers in the study of pomegranate germplasm resources. Acta Hortic, 2015, 1089: 127-132
doi: 10.17660/ActaHortic.2015.1089.14
[13] Praveen K, Kumar M H, Umamaheshwari A, Reddy D M, Sudhakar P, Sabita N.SGDB: a sugarcane germplasm database.Sugar Tech, 2015, 17: 150-155
doi: 10.1007/s12355-014-0307-4
[14] Chen R K, Xu L P, Lin Y Q.Modern Sugarcane Genetic Breeding. Beijing: China Agriculture Press, 2011. pp 2-12
[15] 刘庆昌. 遗传学. 北京:科学出版社, 2015. pp 286-288
Liu Q C.Genetics. Beijing: Science Press, 2015. pp 286-288 (in Chinese)
[16] Ashfaq M, Khan A S.Genetic diversity in basmati rice (Oryza sativa L.) germplasm as revealed by microsatellite (SSR) markers. Russ J Genet, 2012, 48: 53-62
doi: 10.1134/S1022795411120027 pmid: 22567855
[17] Shoaib A, Arabi M I E. Genetic diversity among syrian cultivated and landraces wheat revealed by AFLP markers.Genet Resour Crop Evol, 2006, 53: 901-906
doi: 10.1007/s10722-004-3557-2
[18] Lenka D, Tripathy S K, Kumar R, Behera M, Ranjan R.Assessment of genetic diversity in quality protein maize (QPM) inbreds using ISSR markers.J Environ Biol, 2015, 36: 985-992
pmid: 26364479
[19] Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M. AFLP: a new technique for DNA fingerprinting.Nucl Acids Res, 1995, 23: 4407-4414
doi: 10.1093/nar/23.21.4407 pmid: 7501463
[20] Liu X L, Li X J, Xu C H, Lin X Q, Deng Z H.Genetic diversity of populations of Saccharum spontaneum, with different ploidy levels using SSR molecular markers. Sugar Tech, 2016, 18: 365-372
doi: 10.1007/s12355-015-0399-5
[21] Lander E S.The new genomics: global views of biology.Science, 1996, 274: 536-539
doi: 10.1126/science.274.5287.536
[22] Zietkiewicz E, Rafalski A, Labuda D.Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification.Genomics, 1994, 20: 176-183
doi: 10.1006/geno.1994.1151 pmid: 8020964
[23] Duarte Filho L S C, Silva P P, Santos J M, Barbosa G V S, Ramalho-Neto C E, Soares L, Andrade J C F, Almeida C. Genetic similarity among genotypes of sugarcane estimated by SSR and coefficient of parentage.Sugar Tech, 2010, 12: 145-149
doi: 10.1007/s12355-010-0028-2
[24] Russell J R, Fuller J D, Macaulay M, Hatz B G, Jahoor A, Powell W, Waugh R.Direct comparison of levels of genetic variation among barley accessions detected by RFLPs, AFLPs, SSRs and RAPDs.Theor Appl Genet, 1997, 95: 714-722
doi: 10.1007/s001220050617
[25] Pejic I, Ajmone-Marsan P, Morgante M, Kozumplick V, Castiglioni P, Taramino G, Motto M.Comparative analysis of genetic similarity among maize inbred lines detected by RFLPs, RAPDs, SSRs, and AFLPs.Theor Appl Genet, 1998, 97: 1248-1255
doi: 10.1007/s001220051017
[26] Guichoux E, Lagache L, Wagner S, Chaumeil P, Léger P, Lepais O O, Lepoittevin C, Malausa T, Revardel E, Salin F, Petit R J.Current trends in microsatellite genotyping.Mol Ecol Resour, 2011, 11: 591-611
doi: 10.1111/j.1755-0998.2011.03014.x pmid: 21565126
[27] 刘新龙, 蔡青, 毕艳, 陆鑫, 马丽, 应雄美. 中国滇蔗茅种质资源遗传多样性的AFLP分析. 作物学报, 2009, 35: 262-269
doi: 10.3724/SP.J.1006.2009.00262
Liu X L, Cai Q, Bi Y, Lu X, Ma L, Ying X M.Genetic diversity analysis for germplasm of Erianthus rockii in China. Acta Agron Sin, 2009, 35: 262-269 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2009.00262
[28] Lima M L, Garcia A A, Oliveira K M, Matsuoka S, Arizono H, De Souza C L Jr, De Souza A P. Analysis of genetic similarity detected by AFLP and coefficient of parentage among genotypes of sugar (Saccharum spp.). Theor Appl Genet, 2002, 104: 30-38
[29] Barret B A, Kidwell K K.Comparison of AFLP and pedigree-based genetic diversity assessment methods using wheat cultivars from the Pacific Northwest.Crop Sci, 1998, 38: 1271-1278
doi: 10.2135/cropsci1998.0011183X003800050026x
[30] Singh R K, Singh R B, Singh S P, Mishra N, Rastogi J, Sharma M L, Kumar A.Genetic diversity among Saccharum spontaneum clones and commercial hybrids through SSR markers. Sugar Tech, 2013, 15: 109-115
[31] 齐永文, 劳方业, 张垂明, 樊丽娜, 何慧怡, 刘少谋, 李奇伟, 邓海华. 中美重要甘蔗种质SSR遗传多样性比较. 热带作物学报, 2011, 32: 99-104
doi: 10.3969/j.issn.1000-2561.2011.01.021
Qi Y W, Lao F Y, Zhang C M, Fan L N, He H Y, Liu S M, Li Q W, Deng H H.Comparative analysis of genetic diversity of Chinese and American sugarcane (Saccharum spp.) using SSR makers. Chin J Trop Crop, 2011, 32: 99-104 (in Chinese with English abstract)
doi: 10.3969/j.issn.1000-2561.2011.01.021
[32] 刘新龙, 马丽, 陈学宽, 应雄美, 蔡青, 刘家勇, 吴才文. 云南甘蔗自育品种DNA指纹身份证构建. 作物学报, 2010, 36: 202-210
doi: 10.3724/SP.J.1006.2010.00202
Liu X L, Ma L, Chen X K, Ying X M, Cai Q, Liu J Y, Wu C W.Establishment of DNA fingerprint ID in sugarcane cultivars in Yunnan, China.Acta Agron Sin, 2010, 36: 202-210 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2010.00202
[33] 姚春雪, 王先宏, 何丽莲, 李富生. 甘蔗与蔗茅杂交不同世代的SSR指纹图谱构建. 分子植物育种, 2011, 9: 381-389
doi: 10.3969/mpb.009.000381
Yao C X, Wang X H, He L L, Li F S.DNA fingerprint construction of different generations of Saccharum spp. × Erianthus fulvus using SSR marker. Mol Plant Breed, 2011, 9: 381-389 (in Chinese with English abstract)
doi: 10.3969/mpb.009.000381
[34] 汪洲涛, 苏炜华, 阙友雄, 许莉萍, 张华, 罗俊. 应用AMMI和HA-GGE双标图分析甘蔗品种产量稳定性和试点代表性. 中国生态农业学报, 2016, 24: 790-800
doi: 10.13930/j.cnki.cjea.151284
Wang Z T, Su W H, Que Y X, Xu L P, Zhang H, Luo J.Analysis of yield stability and test site representativeness of sugarcane trials using combined AMMI and HA-GGE biplot models.Chin J Eco-Agric, 2016, 24: 790-800 (in Chinese with English abstract)
doi: 10.13930/j.cnki.cjea.151284
[35] 罗俊, 邓祖湖, 阙友雄, 袁照年, 陈如凯. 国家甘蔗第七轮区域试验品种的丰产性及稳定性. 应用与环境生物学报, 2012, 18: 734-739
doi: 10.3724/sp.j.1145.2012.00734
Luo J, Deng Z H, Que Y X, Yuan Z N, Chen R K.Productivity and stability of sugarcane varieties in the 7th round national regional trial of China.Chin J Appl Environ Biol, 2012, 18: 734-739 (in Chinese with English abstract)
doi: 10.3724/sp.j.1145.2012.00734
[36] Luo J, Pan Y B, Que Y X, Zhang H, Grisham M P, Xu L P.Biplot evaluation of test environments and identification of mega-environment for sugarcane cultivars in China.Sci Rep, 2015, 5: 15505
doi: 10.1038/srep15505 pmid: 26489689
[37] Pan Y B. Application of microsatellite and RAPD fingerprints in the Florida sugarcane variety program. Int Sugar J, 2003, March/April: 19-28
[38] Pan Y B, Scheffler B E, Richard Jr E P. High-throughput molecular genotyping of commercial sugarcane clones with microsatellite (SSR) markers.Sugar Tech, 2007, 9: 176-181
[39] Pan Y B.Databasing molecular identities of sugarcane (Saccharum spp.) clones constructed with microsatellite (SSR) DNA markers. Am J Plant Sci, 2010, 1: 87-94
doi: 10.4236/ajps.2010.12011
[40] 闫学兵, 阙友雄, 许莉萍, 郭晋隆, 陈如凯, 潘永保. 甘蔗EST序列的SSR信息分析. 热带作物学报, 2010, 31: 1497-1501
Yan X B, Que Y X, Xu L P, Guo J L, Chen R K, Pan Y B.Analysis of SSR information in EST resources of sugarcane.Chin J Trop Crop, 2010, 31: 1497-1501 (in Chinese with English abstract)
[41] Cordeiro G M, Pan Y B, Henry R J.Sugarcane microsatellites for the assessment of genetic diversity in sugarcane germplasm.Plant Sci, 2003, 165: 181-189
doi: 10.1016/S0168-9452(03)00157-2
[42] Aitken K S, Jackson P A, McIntyre C L. A combination of AFLP and SSR markers provides extensive map coverage and identification of homo(eo)logous linkage groups in a sugarcane cultivar.Theor Appl Genet, 2005, 110: 789-801
doi: 10.1007/s00122-004-1813-7 pmid: 15700149
[43] Milbourne D, Meyer R, Bradshaw J E, Baird E, Bonar N, Provan J, Powell W, Waugh R.Comparison of PCR-based marker systems for the analysis of genetic relationships in cultivated potato.Mol Breed, 1997, 3: 127-136
doi: 10.1023/A:1009633005390
[44] Streit M, Gehlenborg N.Bar charts and box plots.Nat Methods, 2014, 11: 117
doi: 10.1038/nmeth.2807 pmid: 24645191
[45] Nuzzo R L.The Box plots alternative for visualizing quantitative data.PM&R, 2016, 8: 268-272
doi: 10.1016/j.pmrj.2016.02.001 pmid: 26892802
[46] Creste S, Sansoli D M, Tardiani A C S, Silva D N, Goncalves F K, Favero T M, Medeiros C N F, Festucci C S, Carlini-Garcia L A, Landell M G A, Pinto L R. Comparison of AFLP, TRAP and SSRs in the estimation of genetic relationships in sugarcane.Sugar Tech, 2010, 12: 150-154
doi: 10.1007/s12355-010-0029-1
[47] Mohamed H A, Manosh K B, Zhang Z W, Guo W W.Exploitation of SSR, SRAP and CAPS-SNP markers for genetic diversity of citrus germplasm collection.Sci Hortic, 2011, 128: 220-227
doi: 10.1016/j.scienta.2011.01.021
[48] 高伟, 王坤波, 刘方, 王春英, 张香娣, 王玉红, 黎绍惠. SSR引物及多态性位点数对陆地棉野生种系聚类结果的影响. 植物遗传资源学报, 2013, 14: 237-242
doi: 10.3969/j.issn.1672-1810.2013.02.008
Gao W, Wang K B, Liu F, Wang C Y, Zhang X D, Wang Y H, Li S H.Effection of the quantity of SSR primer and allele on cluster analysis of Gossypium hirsutum Linn races. J Plant Genet Resour, 2013, 14: 237-242 (in Chinese with English abstract)
doi: 10.3969/j.issn.1672-1810.2013.02.008
[49] Luo J, Pan Y B, Xu L P, Zhang H, Yuan Z N, Deng Z H, Chen R K, Que Y X.Cultivar evaluation and essential test locations identification for sugarcane breeding in China. Sci World J, 2014: 302753
doi: 10.1155/2014/302753 pmid: 4055468
[50] Benin G, Matei G, Costa d O A, Silva G O, Hagemann T R, Lemes da Silva C, Pagliosa E S, Beche E. Relationships between four measures of genetic distance and breeding behavior in spring wheat.Genet Mol Res, 2012, 11: 2390-2400
doi: 10.4238/2012.June.15.3 pmid: 22782625
[51] Yao J, Li H, Ye J, Shi L L.Relationship between parental genetic distance and offspring’s heterosis for early growth traits in Liriodendron: implication for parent pair selection in cross breeding.New For, 2016, 47: 163-177
doi: 10.1007/s11056-015-9508-2
[52] Longin F H, Liu W X, Ranc N, Reif J C.Association of progeny variance and genetic distances among parents and implications for the design of elite maize breeding programs.Maydica, 2011, 56: 227-231
doi: 10.1007/s10343-010-0235-5
[53] Wegary D, Vivek B, Labuschagne M.Association of parental genetic distance with heterosis and specific combining ability in quality protein maize.Euphytica, 2013, 191: 205-216
doi: 10.1007/s10681-012-0757-2
[54] 戎俊, 杨小强, 耿宇鹏, 宋志平, 卢宝荣. 分子生态学(第2版). 北京: 高等教育出版社, 2015. pp 249-250
Rong J, Yang X Q, Geng Y P, Song Z P, Lu B R. Molecular Ecology (2nd edn). Beijing: Higher Education Press, 2015. pp 249-250 (in Chinese)
[55] 朱有勇. 农业生物多样性与作物病虫害控制. 北京: 科学出版社, 2013. pp 9-27
Zhu Y Y.Agricultural Biodiversity and Control of Crop Diseases and Insect Pests. Beijing: Science Press, 2013. pp 9-27 (in Chinese)
[1] XIAO Jian, CHEN Si-Yu, SUN Yan, YANG Shang-Dong, TAN Hong-Wei. Characteristics of endophytic bacterial community structure in roots of sugarcane under different fertilizer applications [J]. Acta Agronomica Sinica, 2022, 48(5): 1222-1234.
[2] ZHOU Hui-Wen, QIU Li-Hang, HUANG Xing, LI Qiang, CHEN Rong-Fa, FAN Ye-Geng, LUO Han-Min, YAN Hai-Feng, WENG Meng-Ling, ZHOU Zhong-Feng, WU Jian-Ming. Cloning and functional analysis of ScGA20ox1 gibberellin oxidase gene in sugarcane [J]. Acta Agronomica Sinica, 2022, 48(4): 1017-1026.
[3] KONG Chui-Bao, PANG Zi-Qin, ZHANG Cai-Fang, LIU Qiang, HU Chao-Hua, XIAO Yi-Jie, YUAN Zhao-Nian. Effects of arbuscular mycorrhizal fungi on sugarcane growth and nutrient- related gene co-expression network under different fertilization levels [J]. Acta Agronomica Sinica, 2022, 48(4): 860-872.
[4] FU Mei-Yu, XIONG Hong-Chun, ZHOU Chun-Yun, GUO Hui-Jun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, XU Yan-Hao, LIU Lu-Xiang. Genetic analysis of wheat dwarf mutant je0098 and molecular mapping of dwarfing gene [J]. Acta Agronomica Sinica, 2022, 48(3): 580-589.
[5] MA Hong-Bo, LIU Dong-Tao, FENG Guo-Hua, WANG Jing, ZHU Xue-Cheng, ZHANG Hui-Yun, LIU Jing, LIU Li-Wei, YI Yuan. Application of Fhb1 gene in wheat breeding programs for the Yellow-Huai Rivers valley winter wheat zone of China [J]. Acta Agronomica Sinica, 2022, 48(3): 747-758.
[6] YANG Zong-Tao, LIU Shu-Xian, CHENG Guang-Yuan, ZHANG Hai, ZHOU Ying-Shuan, SHANG He-Yang, HUANG Guo-Qiang, XU Jing-Sheng. Sugarcane ubiquitin-like protein UBL5 responses to SCMV infection and interacts with SCMV-6K2 [J]. Acta Agronomica Sinica, 2022, 48(2): 332-341.
[7] WANG Yin, FENG Zhi-Wei, GE Chuan, ZHAO Jia-Jia, QIAO Ling, WU Bang-Bang, YAN Su-Xian, ZHENG Jun, ZHENG Xing-Wei. Identification of seedling resistance to stripe rust in wheat-Thinopyrum intermedium translocation line and its potential application in breeding [J]. Acta Agronomica Sinica, 2021, 47(8): 1511-1521.
[8] ZHANG Hai, CHENG Guang-Yuan, YANG Zong-Tao, LIU Shu-Xian, SHANG He-Yang, HUANG Guo-Qiang, XU Jing-Sheng. Sugarcane PsbR subunit response to SCMV infection and its interaction with SCMV-6K2 [J]. Acta Agronomica Sinica, 2021, 47(8): 1522-1530.
[9] SU Ya-Chun, LI Cong-Na, SU Wei-Hua, YOU Chui-Huai, CEN Guang-Li, ZHANG Chang, REN Yong-Juan, QUE You-Xiong. Identification of thaumatin-like protein family in Saccharum spontaneum and functional analysis of its homologous gene in sugarcane cultivar [J]. Acta Agronomica Sinica, 2021, 47(7): 1275-1296.
[10] HE Jun-Yu, YIN Shun-Qiong, CHEN Yun-Qiong, XIONG Jing-Lei, WANG Wei-Bin, ZHOU Hong-Bin, CHEN Mei, WANG Meng-Yue, CHEN Sheng-Wei. Identification of wheat dwarf mutants and analysis on association between the mutant traits of the dwarf plants [J]. Acta Agronomica Sinica, 2021, 47(5): 974-982.
[11] WANG Heng-Bo, CHEN Shu-Qi, GUO Jin-Long, QUE You-Xiong. Molecular detection of G1 marker for orange rust resistance and analysis of candidate resistance WAK gene in sugarcane [J]. Acta Agronomica Sinica, 2021, 47(4): 577-586.
[12] ZHANG Xue-Cui, SUN Su-Li, LU Wei-Guo, LI Hai-Chao, JIA Yan-Yan, DUAN Can-Xing, ZHU Zhen-Dong. Identification of resistance gene against phytophthora root rot in new soybean lines breeded in Henan province [J]. Acta Agronomica Sinica, 2021, 47(2): 275-284.
[13] ZHANG Rong-Yue, WANG Xiao-Yan, YANG Kun, SHAN Hong-Li, CANG Xiao-Yan, LI Jie, WANG Chang-Mi, YIN Jiong, LUO Zhi-Ming, LI Wen-Feng, HUANG Ying-Kun. Identification of brown rust resistance and molecular detection of Bru1 gene in new and main cultivated sugarcane varieties [J]. Acta Agronomica Sinica, 2021, 47(2): 376-382.
[14] GUO Qing-Qing, ZHOU Rong, CHEN Xue, CHEN Lei, LI Jia-Na, WANG Rui. Location and InDel markers for candidate interval of the orange petal gene in Brassica napus L. by next generation sequencing [J]. Acta Agronomica Sinica, 2021, 47(11): 2163-2172.
[15] HUANG Yi-Wen, DAI Xu-Ran, LIU Hong-Wei, YANG Li, MAI Chun-Yan, YU Li-Qiang, YU Guang-Jun, ZHANG Hong-Jun, LI Hong-Jie, ZHOU Yang. Relationship between the allelic variations at the Ppo-A1 and Ppo-D1 loci and pre-harvest sprouting resistance in wheat [J]. Acta Agronomica Sinica, 2021, 47(11): 2080-2090.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!