Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (1): 86-98.doi: 10.3724/SP.J.1006.2022.04285

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genome-wide identification and characterization of PIF genes and their response to high temperature stress in potato

JIAN Hong-Ju1,2,3(), SHANG Li-Na1,2,3(), JIN Zhong-Hui1,2,3, DING Yi1, LI Yan1,3, WANG Ji-Chun1,2,3, HU Bai-Geng4, Vadim Khassanov5, LYU Dian-Qiu1,2,3,*()   

  1. 1College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
    2State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing 400715, China
    3Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing 400715, China
    4National Engineering Research Center for Potato, Dezhou 253600, Shandong, China
  • Received:2020-12-29 Accepted:2021-04-14 Online:2022-01-12 Published:2021-05-20
  • Contact: LYU Dian-Qiu E-mail:hjjian518@swu.edu.cn;cxldshanglina@163.com;smallpotatoes@126.com
  • About author:First author contact:** Contributed equally to this work
  • Supported by:
    National Natural Science Foundation of China(32101659);Science and Technology Partnership Program, Ministry of Science and Technology of China(KY201904016);National Key Research and Development Program of China(2018YFE0127900);Talent Introduction Program of Southwest University Project(SWU019008);Talent Introduction Program of Southwest University Project(SWU020009)

Abstract:

Phytochrome interacting factors (PIFs) belong to the basic helix-loop-helix (bHLH) transcription factor family, which integrates external environmental signals such as light and temperature with plant endogenous signal pathways, and then form a complex signal transduction network to precisely regulate the growth and development of plants. Up to now, there are few studies of PIF family genes in potato. Identification and analysis of StPIF family members will help to further improve the yield and quality of potatoes. In this study, BlastP analysis was performed in the potato genome database using Arabidopsis PIFs family member protein sequences as source sequences and seven StPIFs family members were identified. Systemic evolution, chromosome distribution, replication events, protein physicochemical properties, gene structure, motif prediction, promoter cis-acting elements, gene expression pattern, and the response to high temperature stress were also conducted. These results showed that all members of the StPIFs gene family contain Motif 1 (bHLH domain) and Motif 2 (APB domain); multiple cis-regulatory elements involved in light response, hormones, drought, low temperature, and circadian rhythm as well as defense and stress response regulatory elements were predicted in the promoter regions of the StPIF genes. Results of gene expression patterns and high temperature stress response at budding stage revealed that StPIFs family members had obvious tissue expression specificity, indicating their functional differentiation, and most StPIFs members had obvious responses to biotic stress and abiotic stresses including high temperature. In conclusion, these foundlings greatly enriched the understanding of the members of the StPIF family, and laid a theoretical foundation for further exploring the functions of StPIFs genes in responses to biotic stress and abiotic stress during potato growth period including high temperature at tuber stage.

Key words: potato (Solanum tuberosum L.), PIF family, bioinformatics, high temperature, the relative expression pattern

Table 1

Primers used in this study"

引物
Primer
正向序列
Forward sequence (5'-3')
反向序列
Reverse sequence (5'-3')
ef1α
StPIF1a
StPIF1b
StPIF3
StPIF4
StPIF8
ATTGGAAACGGATATGCTCCA
GTTTCACACGTACCCGATAATG
GTACTTCGACTGTAGAGATCCG
GAGTTTAGGTATGGGTATGGGG
TGAACTTCCTGTTCCACATCAA
AATCAGTGTGTACCGAGTTG
TCCTTACCTGAACGCCTGTCA
GAAATGTCACATGTAGTCGTCG
TTTGAATCCACAATCGTCGATG
TACAGCTATTCCTGGATAAGCG
TTCATTAGGATCATAGCCTGGC
CTAACCCATGCATTGCTAAC

Table 2

Sequence characteristics of PIFs family members in potato"

基因
Gene
基因编号
Gene ID
氨基酸数目
Number of amino acids (aa)
分子量Molecular weight (kD) 等电点Isoelectric point (pI) 位置
Location
功能域
Functional domains
(Start-End, bp)
StPIF1a PGSC0003DMG400018950 578 62.94 6.42 ch09:45450532-45460120 343-406/bHLH
StPIF1b PGSC0003DMG400014705 515 56.41 5.13 ch06:2038519-2047215 309-372/bHLH
StPIF3 PGSC0003DMG400018280 708 75.83 7.26 ch01:79007967-79013234 450-512/bHLH
StPIF4 PGSC0003DMG401015926 517 57.44 7.09 ch07:42074703-42078252 331-394/bHLH
StPIF7a PGSC0003DMG400024554 437 48.17 6.79 ch03:55395567-55398080 237-298/bHLH
StPIF7b PGSC0003DMG400033087 416 46.81 8.71 ch06:51466651-51468759 195-252/bHLH
StPIF8 PGSC0003DMG400025976 464 50.75 7.62 ch01:70077080-70081427 281-344/bHLH

Fig. 1

Alignment of PIFs amino acid sequences from Arabidopsis thaliana, Solanum tubersum, and Solanum lycopersicum A: active phytochrome B-binding (APB) domain; B: active phytochrome A-binding (APA) domain; C: basic helix-loop-helix (bHLH) DNA-binding domain."

Fig. 2

Phylogenic tree of PIFs gene family At: Arabidopsis thaliana; St: Solanum tubersum; Sl: Solanum lycopersicum; Os: Oryza sativa; Zm: Zea mays."

Fig. 3

Structure and conserved motif of PIFs gene in potato Motif: conservative base sequence; UTR: untranslated region; CDS: coding region sequence."

Fig. 4

Conserved motifs of PIFs family members in potato"

Fig. 5

Collinearity analysis of the PIFs gene family in potato"

Fig. 6

Collinearity analysis of PIFs genes among Solanum tubersum, Arabidopsis thaliana, and Solanum lycopersicum"

Fig. 7

Cis-elements in the promoter of StPIFs genes in responses to various stresses and plant development in potato"

Fig. 8

Conserved motif of PIFs promoter sequence in potato"

Fig. 9

Conserved motifs of promoters of PIFs family in potato"

Fig. 10

PIFs promoter sequence binding transcription factor in potato"

Fig. 11

Heat map of PIFs genes in response to environmental stress in potato"

Fig. 12

Relative expression level of StPIFs genes in different tissues under high temperature stress"

[1] Oh E, Yamaguchi S, Hu J, Yusuke J, Jung B, Paik I, Lee H S, Sun T P, Kamiya Y, Choi G. PIL5, a phytochrome-interacting bHLH protein, regulates gibberellin responsiveness by binding directly to the GAI and RGA promoters in Arabidopsis seeds. Plant Cell, 2007, 19:1192-1208.
[2] Kumar S V, Lucyshyn D, Jaeger K E, Alos E, Alvey E, Harberd N P, Wigge P A. Transcription factor PIF4 controls the thermosensory activation of flowering. Nature, 2012, 484:242-245.
[3] Sun W, Han H, Deng L, Sun C, Xu Y, Lin L, Ren P, Zhao J, Zhai Q, Li C. Mediator subunit MED25 physically interacts with PHYTOCHROME INTERACTING FACTOR4 to regulate shade-induced hypocotyl elongation in tomato. Plant Physiol, 2020, 184:1549-1562.
[4] Gao Y, Jiang W, Dai Y, Xiao N, Zhang C Q, Li H, Lu Y, Wu M Q, Tao X Y, Deng D X, Chen J M. A maize phytochrome-interacting factor 3 improves drought and salt stress tolerance in rice. Plant Mol Biol, 2015, 87:413-428.
[5] Jiang B C, Shi Y T, Zhang X Y, Xin X Y, Qi L J, Guo H W, Li J G, Yang S H. PIF3 is a negative regulator of the CBF pathway and freezing tolerance in Arabidopsis. Proc Natl Acad Sci USA, 2017, 114:E6695-E6702.
[6] Gao Y, Wu M, Zhang M, Jiang W, Liang E, Zhang D, Zhang C, Xiao N, Chen J. Roles of a maize phytochrome-interacting factors protein ZmPIF3 in regulation of drought stress responses by controlling stomatal closure in transgenic rice without yield penalty. Plant Mol Biol, 2018, 97:311-323.
[7] Gao Y, Wu M, Zhang M, Jiang W, Ren X, Liang E, Zhang D, Zhang C, Xiao N, Li Y, Dai Y, Chen J. A maize phytochrome-interacting factors protein ZmPIF1 enhances drought tolerance by inducing stomatal closure and improves grain yield in Oryza sativa L. Plant Biotechnol J, 2018, 16:1375-1387.
[8] Lee N, Choi G. Phytochrome-interacting factor from Arabidopsis to liverwort. Curr Opin Plant Biol, 2017, 35:54-60.
[9] Castillon A, Shen H, Huq E. Phytochrome interacting factors: central players in phytochrome-mediated light signaling networks. Trends Plant Sci, 2007, 12:514-521.
[10] Koini M A, Alvey L, Allen T, Tilley C A, Harberd N P, Whitelam G C, Franklin K A. High temperature-mediated adaptations in plant architecture require the bHLH transcription factor PIF4. Curr Biol, 2009, 19:408-413.
[11] Franklin K A, Lee S H, Patel D, Kumar S V, Spartz A K, Gu C, Ye S, Yu P, Breen G, Cohen J D, Wigge P A, Gray W M. Phytochrome-interacting factor 4 (PIF4) regulates auxin biosynthesis at high temperature. Proc Natl Acad Sci USA, 2011, 108:20231-20235.
[12] Lau O S, Song Z, Zhou Z, Davies K A, Chang J, Yang X, Wang S, Lucyshyn D, Tay I H Z, Wigge P A, Bergmann D C, Direct control of SPEECHLESS by PIF4 in the high-temperature response of stomatal development. Curr Biol, 2018, 28:1273-1280.
[13] 陈淼, 谢赛, 王超智, 李焱龙, 张献龙, 闵玲. 棉花GhPIF4调控高温下花药败育机制初探. 作物学报, 2020, 46:1368-1379.
Chen M, Xie S, Wang C Z, Li Y L, Zhang X L, Min L. Mechanism of GhPIF4 regulating anther abortion under high temperature stress in cotton. Acta Agron Sin, 2020, 46:1368-1379 (in Chinese with English abstract).
[14] 冯韬, 谭晖, 官梅, 官春云. BnaBZR1BnaPIF4基因调控甘蓝型油菜弱光光效的机制. 作物学报, 2020, 46:1146-1156.
Feng T, Tan H, Guan M, Guan C Y. Mechanism of BnaBZR1 and BnaPIF4 regulating photosynthetic efficiency in oilseed rape(Brassica napus L.) under poor light. Acta Agron Sin, 2020, 46:1146-1156 (in Chinese with English abstract).
[15] Kidokoro S, Maruyama K, Nakashima K, Imura Y, Narusaka Y, Shinwari Z K, Osakabe Y, Fujita Y, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K. The phytochrome-interacting factor PIF7 negatively regulates DREB1 expression under circadian control in Arabidopsis. Plant Physiol, 2009, 151:2046-2057.
[16] 王小欢. 马铃薯试管块茎形成有关的光敏感基因筛选与鉴定. 华中农业大学硕士学位论文,湖北武汉, 2014. pp 27-30.
Wang X H. The Screening and Identification of Photoperiod- Sensitive Genes Which Relate to Microtuber Formation. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei,China, 2014. pp 27-30 (in Chinese with English abstract).
[17] 李明, 谢海娟, 叶广继, 杨永智, 王舰, 周云. 马铃薯光敏色素作用因子基因PIF4的克隆及表达分析. 分子植物育种, 2018, 16:6193-6201.
Li M, Xie H J, Ye G J, Yang Y Z, Wang J, Zhou Y. Isolation and expression analysis of potato phytochrome interacting factor gene StPIF4. Mol Plant Breed, 2018, 16:6193-6201 (in Chinese with English abstract).
[18] Chow C N, Lee T Y, Hung Y C, Li G Z, Tseng K C, Liu Y H, Kuo P L, Zheng H Q, Chang W C. PlantPAN3.0: a new and updated resource for reconstructing transcriptional regulatory networks from ChIP-seq experiments in plants. Nucleic Acids Res, 2018, 47:D1155-D1163.
[19] Xu G, Guo C, Shan H, Kong H. Divergence of duplicate genes in exon-intron structure. Proc Natl Acad Sci USA, 2012, 109:1187-1192.
[20] Leivar P, Monte E, Al-Sady B, Carle C, Storer A, Alonso J M, Ecker J R, Quail P H. The Arabidopsis phytochrome-interacting factor PIF7, together with PIF3 and PIF4, regulates responses to prolonged red light by modulating phyB levels. Plant Cell, 2008, 20:337-352.
[21] Nakamura Y, Kato T, Yamashino T, Murakami M, Mizuno T. Characterization of a set of phytochrome-interacting factor-like bHLH proteins in Oryza sativa L. Biosci Biotechnol Biochem, 2007, 71:1183-1191.
[22] Gao Y, Ren X, Qian J. The phytochrome-interacting family of transcription factors in maize (Zea mays L.): identification, evolution, and expression analysis. Acta Physiol Plant, 2019, 41:8.
[23] Rosado D, Gramegna G, Cruz A, Lira B S, Freschi L, de Setta N, Rossi M, Phytochrome interacting factors (PIFs) in Solanum lycopersicum: diversity, evolutionary history and expression profiling during different developmental processes. PLoS One, 2016, 11:e0165929.
[24] 徐向东, 任逸秋, 张利, 李煜, 王丽娟, 卢孟柱. 杨树PIF基因家族成员表达模式研究. 林业科学研究, 2018, 31(2):19-25.
Xu X D, Ren Y Q, Zhang L, Li Y, Wang L J, Lu M Z. Analysis of expression pattern of PIF family members in populus. For Res, 2018, 31(2):19-25 (in Chinese with English abstract).
[25] Zhang K, Zheng T, Zhu X, Jiu S, Liu Z, Guan L, Jia H, Fang J. Genome-wide identification of PIFs in Grapes(Vitis vinifera L.) and their transcriptional analysis under lighting/shading conditions. Genes (Basel), 2018, 9:451.
[26] Ma J Q, Jian H J, Yang B, Lu K, Zhang A X, Liu P, Li J N. Genome-wide analysis and expression profiling of the GRF gene family in oilseed rape(Brassica napus L.). Gene, 2017, 620:36-45.
[27] 王金英, 丁峰, 潘介春, 张树伟, 杨亚涵, 黄幸, 范志毅, 李琳, 王颖. 植物bZIP转录因子家族的研究进展. 热带农业科学, 2019, 39(6):39-45.
Wang J Y, Ding F, Pan J C, Zhang S W, Yang Y H, Huang X, Fang Z Y, Li L, Wang Y. Research progress of bZIP lineage transcription factors in plant. Chin J Trop Agric, 2019, 39(6):39-45 (in Chinese with English abstract).
[28] 王瑞芳, 胡银松, 高文蕊, 张宜欣, 宋兴舜. 植物NAC转录因子家族在抗逆响应中的功能. 植物生理学报, 2014, 50:1494-1500.
Wang R F, Hu Y S, Gao W R, Zhang Y X, Song X S. Functions of NAC transcription factors family in stress responses in plants. Plant Physiol J, 2014, 50:1494-1500 (in Chinese with English abstract).
[29] 孙淑豪, 余迪求. WRKY转录因子家族调控植物逆境胁迫响应. 生物技术通报, 2016, 32(10):66-76.
Sun S H, Yu D Q. WRKY transcription factors in regulation of stress response in plant. Biotechnol Bull, 2016, 32(10):66-76 (in Chinese with English abstract).
[30] 刘丽娟, 高辉. TCP家族基因研究进展. 生物技术通报, 2016, 32(9):14-22.
Liu L J, Gao H. Research progress on the family of TCP genes. Biotechnol Bull, 2016, 32(9):14-22 (in Chinese with English abstract).
[31] Levy D, Veilleux R E. Adaptation of potato to high temperatures and salinity: a review. Am J Potato Res, 2007, 84:487-506.
[32] Aien, A, Chaturvedi A K, Bahuguna R N, Pal M. Phenological sensitivity to high temperature stress determines dry matter partitioning and yield in potato. Plant Physiol, 2016, 22:63-69.
[33] Holden N, Brereton A, Fealy R, Sweeney J. Possible change in Irish climate and its impact on barley and potato yields. Agric For Meteorol, 2003, 116:181-196.
[34] Hijmans R J. The effect of climate change on global potato production. Am J Pot Res, 2003, 80:271-279.
[1] WU Yan-Fei, HU Qin, ZHOU Qi, DU Xue-Zhu, SHENG Feng. Genome-wide identification and expression analysis of Elongator complex family genes in response to abiotic stresses in rice [J]. Acta Agronomica Sinica, 2022, 48(3): 644-655.
[2] YU Hui-Fang, ZHANG Wei-Na, KANG Yi-Chen, FAN Yan-Ling, YANG Xin-Yu, SHI Ming-Fu, ZHANG Ru-Yan, ZHANG Jun-Lian, QIN Shu-Hao. Genome-wide identification and expression patterns in response to signals from Phytophthora infestans of CrRLK1Ls gene family in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 249-258.
[3] HUANG Ning, HUI Qian-Long, FANG Zhen-Ming, LI Shan-Shan, LING Hui, QUE You-Xiong, YUAN Zhao-Nian. Identification, localization and expression analysis of beta-carotene isomerase gene family in sugarcane [J]. Acta Agronomica Sinica, 2021, 47(5): 882-893.
[4] LI Peng, LIU Che, SONG Hao, YAO Pan-Pan, SU Pei-Lin, WEI Yao-Wei, YANG Yong-Xia, LI Qing-Chang. Identification and analysis of non-specific lipid transfer protein family in tobacco [J]. Acta Agronomica Sinica, 2021, 47(11): 2184-2198.
[5] CHEN Miao, XIE Sai, WANG Chao-Zhi, LI Yan-Long, ZHANG Xian-Long, MIN Ling. Mechanism of GhPIF4 regulating anther abortion under high temperature stress in cotton [J]. Acta Agronomica Sinica, 2020, 46(9): 1368-1379.
[6] HUANG Xiao-Fang,BI Chu-Yun,SHI Yuan-Yuan,HU Yun-Zhuo,ZHOU Li-Xiang,LIANG Cai-Xiao,HUANG Bi-Fang,XU Ming,LIN Shi-Qiang,CHEN Xuan-Yang. Discovery and analysis of NBS-LRR gene family in sweet potato genome [J]. Acta Agronomica Sinica, 2020, 46(8): 1195-1207.
[7] HAN Zhan-Yu,GUAN Xian-Yue,ZHAO Qian,WU Chun-Yan,HUANG Fu-Deng,PAN Gang,CHENG Fang-Min. Individual and combined effects of air temperature at filling stage and nitrogen application on storage protein accumulation and its different components in rice grains [J]. Acta Agronomica Sinica, 2020, 46(7): 1087-1098.
[8] ZHENG Qing-Lei,YU Chen-Jing,YAO Kun-Cun,HUANG Ning,QUE You-Xiong,LING Hui,XU Li-Ping. Cloning and expression analysis of sugarcane Fe/S precursor protein gene ScPetC [J]. Acta Agronomica Sinica, 2020, 46(6): 844-857.
[9] Zhen-Yu LIU,Gui-Xia WANG,Li-Nan LI,Ze-Zhou CAI,Pan-Pan LIANG,Xin-Ling WU,Xiang ZHANG,De-Hua CHEN. Recovery characteristics of Bt insecticidal protein and relative physiological mechanisms after high temperature stress termination in square of Bt cotton [J]. Acta Agronomica Sinica, 2020, 46(3): 440-447.
[10] LU Hai-Qin, CHEN Li, CHEN Lei, ZHANG Ying-Chuan, WEN Jing, YI Bin, TU Jing-Xing, FU Ting-Dong, SHEN Jin-Xiong. Mechanism research of Bna-novel-miR311-HSC70-1 module regulating heat stress response in Brassica napus L. [J]. Acta Agronomica Sinica, 2020, 46(10): 1474-1484.
[11] YAO Jun-Yue,HUA Ying-Peng,ZHOU Ting,WANG Tao,SONG Hai-Xing,GUAN Chun-Yun,ZHANG Zhen-Hua. Identification and function analysis of AVP1, VHA-a2, and VHA-a3 genes in Brassica napus L. [J]. Acta Agronomica Sinica, 2019, 45(8): 1146-1157.
[12] SUN Ting-Ting,WANG Wen-Ju,LOU Wen-Yue,LIU Feng,ZHANG Xu,WANG Ling,CHEN Yu-Feng,QUE You-Xiong,XU Li-Ping,LI Da-Mei,SU Ya-Chun. Cloning and expression analysis of sugarcane lipoxygenase gene ScLOX1 [J]. Acta Agronomica Sinica, 2019, 45(7): 1002-1016.
[13] Li-Li GUO,Xi-Xi ZHANG,Li-Hua HAO,Ya-Jun QIAO,Wen-Na CHEN,Yun-Ze LU,Fei LI,Xu CAO,Qing-Tao WANG,Yun-Pu ZHENG. Responses of leaf gas exchange to high temperature and drought combination as well as re-watering of winter wheat under doubling atmospheric CO2 concentration [J]. Acta Agronomica Sinica, 2019, 45(6): 949-956.
[14] Gui-Hong LIANG,Ying-Peng HUA,Ting ZHOU,Qiong LIAO,Hai-Xing SONG,Zhen-Hua ZHANG. Bioinformatics analysis and response to nitrate-cadmium stress of NRT1.5 and NRT1.8 family genes in Brassica napus [J]. Acta Agronomica Sinica, 2019, 45(3): 365-380.
[15] Zuo-Min WANG,Jin LIU,Shi-Chao SUN,Xin-Yu ZHANG,Fei XUE,Yan-Jun LI,Jie SUN. Identification and Expression Analysis of Multidrug and Toxic Compound Extrusion Protein Family Genes in Colored Cotton [J]. Acta Agronomica Sinica, 2018, 44(9): 1380-1392.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!