Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (6): 1526-1536.doi: 10.3724/SP.J.1006.2022.13036

• RESEARCH NOTES • Previous Articles     Next Articles

Canopy structure, photosynthesis, grain filling, and dehydration characteristics of maize varieties suitable for grain mechanical harvesting

XU Tian-Jun**(), ZHANG Yong**(), ZHAO Jiu-Ran*(), WANG Rong-Huan*(), LYU Tian-Fang, LIU Yue-E, CAI Wan-Tao, LIU Hong-Wei, CHEN Chuan-Yong, WANG Yuan-Dong   

  1. Maize Research Center, Beijing Academy of Agriculture & Forestry Sciences / Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing 100097, China
  • Received:2021-05-14 Accepted:2021-09-09 Online:2022-06-12 Published:2021-10-19
  • Contact: ZHAO Jiu-Ran,WANG Rong-Huan E-mail:xtjxtjbb@163.com;zhangyongzhangxuan@163.com;maizezhao@126.com;ronghuanwang@126.com
  • About author:First author contact:

    ** Contributed equally to this work

  • Supported by:
    National Key Research and Development Program of China(2017YFD0101202);China Agriculture Research System of MOF and MARA;Beijing Academy of Agricultural and Forestry Sciences(KJCX20180423)

Abstract:

To provide technical support for the selection and popularization of corn varieties suitable for mechanized grain harvest, the canopy structure, photosynthetic characteristics, and mechanical harvesting characteristics of different types of maize varieties were compared with 24 maize varieties including Jingnongke 728 produced and widely promoted in China. The results showed that: (1) The average yield, moisture content, broken rate and impurity content at harvest of the tested varieties were 11,658.78 kg hm-2, 24.66%, 3.90%, and 0.83%. The average yield of 18 suitable machine harvesting varieties such as Jingnongke 728 with Jing 2416 as male parent was 11,802.70 kg hm-2, which was significantly higher by 7.69% and 4.45% than those of Zhengdan 958 and Xianyu 335, respectively. The grain moisture content at harvest was lower than 28% (average 24.61%); The average broken rate was less than 5% (average 3.42%), reaching the national standard of machine harvested grain. (2) 18 maize varieties suitable for grain mechanical harvesting such as Jingnongke 728 with Jing 2416 as male parent had small angle between stem and leaf, compact plant type, high average light transmittance and more reasonable light distribution. (3) The average net photosynthetic rate and chlorophyll content of the tested maize varieties were 34.10 μmol CO2 m -2 s-1 and 8.91 mg m2. The average net photosynthetic rate of the 18 maize varieties suitable for machine harvesting with Jing 2416 as male parent was 35.21 μmol CO2 m -2 s-1, which was 19.60% and 6.73% higher than Zhengdan 958 and Xianyu 335. The average chlorophyll content was 9.87 mg m2, which was 61.54% and 68.43% higher than Zhengdan 958 and Xianyu 335. (4) The average grain filling rate and dehydration rate after physiological maturity of 18 varieties with Jing 2416 as male parent were 0.83 g 100 grain-1 d-1 and 0.55% d-1, respectively, which were significantly higher than those of Zhengdan 958 and Xianyu 335, showing a lower grain moisture content at harvest. (5) Correlation analysis revealed that the yield of the tested varieties was significantly positively correlated with net photosynthetic rate and grain filling rate. The net photosynthetic rate was negatively correlated with the angle between stem and leaf, and positively correlated with light transmittance and chlorophyll content. Grain moisture content at harvest was significantly positively correlated with breakage rate, impurity content and grain moisture content after physiological maturity, negatively correlated with dehydration rate after physiological maturity, and negatively correlated with grain filling rate. In conclusion, maize varieties suitable for mechanical harvesting under the condition of high planting density should have compact plant type, high canopy light transmittance, strong photosynthetic capacity, high grain filling, and dehydration rate, which could lead to achieve lower grain moisture content and higher yield.

Key words: machine harvested corn variety, canopy structure, photosynthetic characteristics, grain filling and dehydration characteristic

Fig. 1

Meteorological condition during growth stage of tested maize variety in 2020"

Table 1

Parent and growing stage of the tested maize varieties"

品种
Hybrid
母本
Female parent
父本
Male parent
生理成熟期
Physiological maturity#
收获期
Harvest
period#
生育期
Growing stage
(d)
京农科728 Jingnongke 728 京MC01 Jing MC01 京2416 Jing 2416 9/17 10/1 99
京农科828 Jingnongke 828 京88 Jing 88 京2416 Jing 2416 9/20 10/4 102
MC121 京72464 Jing 72464 京2416 Jing 2416 9/22 10/6 104
鑫瑞25 Xinrui 25 T12-4 T6 (京2416 Jing 2416) 9/20 10/4 102
现代59 Xiandai 59 XD2458 京2416 Jing 2416 9/27 10/11 109
硕秋518 Shuoqiu 518 京B547 Jing B547 京2416D Jing 2416D 9/18 10/2 100
京科739 Jingke 739 京5846 Jing 5846 京2416 Jing 2416 9/27 10/11 109
京农科736 Jingnongke 736 京58-6 Jing 58-6 京3719-274 Jing 3719-274
(京2416 Jing 2416)
9/26 10/10 108
MC738 京724 Jing 724 京2416 Jing 2416 9/22 10/6 104
MC812 京B547 Jing B547 京2416 Jing 2416 9/18 10/2 100
京科528 Jingke 528 90110-2 J2437 (京2416 Jing 2416) 9/29 10/13 111
京科389 Jingke 389 MC03 京2416 Jing 2416 10/1 10/15 113
京单68 Jingdan 68 CH8 京2416 Jing 2416 9/27 10/11 109
京单58 Jingdan 58 CH3 京2416 Jing 2416 9/27 10/11 109
京单38 Jingdan 38 京D9B Jing D9B 京2416 Jing 2416 9/28 10/12 110
丰乐303 Fengle 303 京725 Jing 725 京2416 Jing 2416 9/26 10/10 108
NK718 京464 Jing 464 京2416 Jing 2416 9/28 10/12 110
MC565 XD3738 京2416 Jing 2416 9/29 10/13 111
迪卡159 Dika 159 HCL301 F0147Z 9/20 10/4 102
迪卡517 Dika 517 D1798Z HCL645 9/20 10/4 102
先玉023 Xianyu 023 PH12P3 PH12RP 10/1 10/15 113
先玉688 Xianyu 688 PHJEV PHRKB 10/3 10/17 115
郑单958 Zhengdan 958 郑58 Zheng 58 昌7-2 Chang 7-2 10/7 10/21 119
先玉335 Xianyu 335 PH6WC PH4CV 10/4 10/18 116

Table 2

Yield and mechanical harvest quality traits of the tested maize varieties"

品种
Hybrid
产量
Yield (kg hm-2)
破碎率
Grain broken rate (%)
杂质率
Impurity rate (%)
京农科728 Jingnongke 728 11,620.00 fg 2.13 l 0.47 l
京农科828 Jingnongke 828 11,781.65 defg 2.90 hi 0.53 l
MC121 11,573.55 ghi 3.10 hi 0.72 ijk
鑫瑞25 Xinrui 25 11,613.05 gh 2.27 jkl 0.43 l
现代59 Xiandai 59 11,565.90 ghi 2.73 ij 1.11 cd
硕秋518 Shuoqiu 518 11,761.25 efg 2.72 ijk 0.87 fg
京科739 Jingke 739 12,069.25 bcd 3.27 gh 0.71 jk
京农科736 Jingnongke 736 11,902.20 cdef 3.71 fg 0.75 hij
MC738 11,646.45 fg 3.96 ef 1.14 cd
MC812 12,084.55 bc 2.20 kl 0.48 l
京科528 Jingke 528 11,560.95 ghi 4.88 d 1.04 de
京科389 Jingke 389 12,487.65 a 3.74 fg 0.94 ef
京单68 Jingdan 68 12,462.65 a 4.04 ef 0.73 hijk
京单58 Jingdan 58 12,447.20 a 3.90 ef 0.82 ghi
京单38 Jingdan 38 11,963.50 bcde 4.41 de 0.89 fg
丰乐303 Fengle 303 10,805.10 jk 4.02 ef 1.13 cd
NK718 11,588.95 gh 3.24 ghi 1.20 c
MC565 11,514.75 ghi 4.31 e 1.56 a
迪卡159 Dika 159 10,957.70 j 3.29 gh 0.50 l
迪卡517 Dika 517 10,567.70 k 2.81 hi 0.64 k
先玉023 Xianyu 023 11,327.45 hi 7.88 a 0.49 l
先玉688 Xianyu 688 12,249.20 ab 4.89 d 0.50 l
郑单958 Zhengdan 958 10,959.75 j 7.07 b 1.34 b
先玉335 Xianyu 335 11,300.25 i 6.09 c 0.83 gh

Table 3

Plant height, ear height, and leaf angle of the tested maize varieties"

品种
Hybrid
株高
Plant height (cm)
穗位高
Ear height (cm)
穗位系数
Ear ratio (%)
穗上茎叶夹角
Leaf angle above ear (°)
穗下茎叶夹角
Leaf angle under ear (°)
京农科728 Jingnongke 728 279.1 bcde 108.2 defg 38.77 cdef 17.59 jk 24.76 ghi
京农科828 Jingnongke 828 289.9 a 107.1 defg 36.94 ef 18.03 ij 26.80 ef
MC121 277.1 cde 105.3 efgh 38.00 cdef 19.87 efg 24.85 ghi
鑫瑞25 Xinrui 25 276.9 cde 108.3 defg 39.11 cde 16.65 kl 25.15 ghi
现代59 Xiandai 59 278.3 bcde 109.3 defg 39.27 cde 18.41 hij 24.36 hi
硕秋518 Shuoqiu 518 276.9 cde 104.7 fgh 37.81 cdef 19.27 ghi 24.88 ghi
京科739 Jingke 739 257.7 g 93.9 i 36.44 f 19.59 fgh 25.69 efgh
京农科736 Jingnongke 736 283.6 ab 107.9 defg 38.05 cdef 17.62 jk 26.86 ef
MC738 290.4 a 110.9 def 38.19 cdef 19.23 ghi 25.71 efgh
MC812 277.5 cde 110.8 def 39.93 c 16.03 l 23.88 i
京科528 Jingke 528 284.2 abc 105.5 efgh 37.12 def 16.10 l 25.63 efgh
京科389 Jingke 389 264.4 fg 102.1 gh 38.62 cdef 20.19 efg 30.41 d
京单68 Jingdan 68 261.5 g 104.0 fgh 39.77 cd 19.08 ghi 27.05 e
京单58 Jingdan 58 264.9 fg 105.4 efgh 39.79 c 19.09 ghi 25.32 fghi
京单38 Jingdan 38 261.6 g 98.1 hi 37.50 cdef 20.96 e 26.30 efg
丰乐303 Fengle 303 270.7 ef 104.8 fgh 38.71 cdef 20.86 ef 27.07 e
NK718 286.8 ab 112.5 cde 39.23 cde 23.27 abc 25.87 efgh
MC565 272.8 ef 98.5 hi 36.11 f 22.86 bc 27.00 e
迪卡159 Dika 159 275.0 de 119.7 bc 43.53 b 24.42 a 38.55 a
迪卡517 Dika 517 261.0 g 126.4 b 48.43 a 22.36 cd 34.30 b
先玉023 Xianyu 023 290.5 a 124.4 b 42.82 b 23.25 abc 26.02 efg
先玉688 Xianyu 688 284.7 abc 113.5 cd 39.87 c 23.23 abc 30.61 d
郑单958 Zhengdan 958 278.2 bcde 141.2 a 50.75 a 21.00 de 29.47 d
先玉335 Xianyu 335 278.5 bcde 122.3 b 43.91 b 24.20 ab 32.59 c

Table 4

Canopy transmittance of the tested maize varieties"

品种
Hybrid
透光率Light transmittance (%) 平均值Average
穗下层Under ear layer 穗位层Ear layer 穗上层Above ear layer
京农科728 Jingnongke 728 18.98 a 46.72 a 82.82 a 49.51 a
京农科828 Jingnongke 828 13.86 cde 46.46 ab 77.68 b 46.00 bcd
MC121 15.09 bcd 45.32 bc 73.64 cde 44.68 cde
鑫瑞25 Xinrui 25 16.96 abc 45.58 abc 76.62 bc 46.39 bc
现代59 Xiandai 59 11.13 efg 46.59 ab 71.40 def 43.04 ef
硕秋518 Shuoqiu 518 17.07 abc 46.89 a 81.89 a 48.62 a
京科739 Jingke 739 18.78 a 43.91 de 70.72 efg 44.47 de
京农科736 Jingnongke 736 10.10 fgh 43.09 e 67.26 hij 40.15 gh
MC738 16.47 abc 38.30 g 69.49 fgh 41.42 fg
MC812 17.64 ab 44.34 cde 77.70 b 46.56 b
京科528 Jingke 528 8.21 ghi 37.79 g 73.34 de 39.78 gh
京科389 Jingke 389 9.84 fgh 38.10 g 74.40 cd 40.78 gh
京单68 Jingdan 68 8.17 ghi 36.19 h 65.01 ijk 36.46 ij
京单58 Jingdan 58 11.29 efg 40.48 f 67.35 hi 39.70 gh
京单38 Jingdan 38 8.82 ghi 38.62 g 64.18 jkl 37.21 h
丰乐303 Fengle 303 15.16 bcd 44.85 cd 67.83 ghi 42.61 f
NK718 15.12 bcd 43.58 de 68.99 fgh 42.56 f
MC565 16.11 abcd 31.68 j 69.83 fgh 39.21 i
迪卡159 Dika 159 7.58 hi 23.71 l 57.97 n 29.75 m
迪卡517 Dika 517 9.53 fgh 34.01 i 58.66 mn 34.07 ij
先玉023 Xianyu 023 9.00 ghi 19.61 m 59.60 mn 29.40 m
先玉688 Xianyu 688 5.94 i 28.87 k 61.58 lm 32.13 l
郑单958 Zhengdan 958 12.71 def 27.77 k 64.10 kl 34.86 jk
先玉335 Xianyu 335 7.03 hi 22.86 l 54.29 o 28.06 m

Table 5

Grain filling rate, dehydration rate, and grain moisture content of the tested maize varieties"

品种
Hybrid
生理成熟时籽粒含水率
Grain moisture content at physiological maturity stage (%)
收获期籽粒含水率
Grain moisture content at harvest stage
(%)
生理成熟后脱水速率
Grain dehydration rate after physiological maturity stage
(% d-1)
籽粒灌浆速率
Grain filling rate
(g 100-grain-1 d-1)
京农科728 Jingnongke 728 30.96 def 21.86 j 0.65 a 0.91 a
京农科828 Jingnongke 828 31.73 cdef 23.66 fghi 0.58 bcdef 0.87 ab
MC121 32.39 abcd 24.04 efghi 0.60 abcd 0.86 ab
鑫瑞25 Xinrui 25 31.51 cdef 23.02 hij 0.61 abc 0.86 ab
现代59 Xiandai 59 31.35 cdef 24.21 defghi 0.51 fghi 0.83 bcde
硕秋518 Shuoqiu 518 31.35 cdef 23.09 ghij 0.59 abcde 0.85 abcd
京科739 Jingke 739 31.59 cdef 24.59 cdefgh 0.50 hi 0.82 bcde
京农科736 Jingnongke 736 32.84 abc 24.90 bcdef 0.57 bcdefg 0.88 ab
MC738 32.73 abc 25.85 bcd 0.49 i 0.75 fgh
MC812 31.59 cdef 22.81 hij 0.63 ab 0.86 abc
京科528 Jingke 528 33.50 ab 26.50 b 0.50 hi 0.83 bcde
京科389 Jingke 389 32.23 abcd 24.81 bcdefg 0.53 defghi 0.79 def
京单68 Jingdan 68 32.89 abc 25.19 bcdef 0.55 cdefghi 0.80 cdef
京单58 Jingdan 58 33.55 ab 25.71 bcde 0.56 cdefgh 0.86 ab
京单38 Jingdan 38 33.84 a 26.28 bc 0.54 defghi 0.78 efg
丰乐303 Fengle 303 32.54 abcd 25.07 bcdef 0.53 efghi 0.75 fgh
NK718 31.55 cdef 25.67 bcde 0.42 j 0.82 bcde
MC565 32.94 abc 25.80 bcde 0.51 ghi 0.72 hi
迪卡159 Dika 159 32.12 abcde 24.19 defghi 0.57 bcdefg 0.69 hi
迪卡517 Dika 517 30.43 ef 22.63 ij 0.56 cdefgh 0.68 i
先玉023 Xianyu 023 30.21 f 22.65 ij 0.54 defghi 0.69 hi
先玉688 Xianyu 688 31.87 bcdef 24.45 defgh 0.53 efghi 0.72 ghi
郑单958 Zhengdan 958 33.60 ab 29.21 a 0.31 k 0.56 j
先玉335 Xianyu 335 32.61 abcd 25.55 bcde 0.50 hi 0.68 i

Table 6

Chlorophyll content, photosynthetic rate, and transpiration rate of the tested maize varieties"

品种
Hybrid
叶绿素含量
Chlorophyll content (mg m2)
净光合速率
Net photosynthetic rate
(μmol CO2 m-2 s-1)
蒸腾速率
Transpiration rate
(mmol m-2 s-1)
叶片水分利用效率
Leaf water use efficiency (μmol mmol-1)
京农科728 Jingnongke 728 9.99 abc 37.27 bc 5.03 abc 7.41 bcde
京农科828 Jingnongke 828 10.01 abc 36.46 cd 5.21 abc 6.99 bcdef
MC121 10.09 abc 36.94 bc 5.44 ab 6.79 cdefg
鑫瑞25 Xinrui 25 10.34 ab 34.86 fg 4.41 abc 7.91 abcd
品种
Hybrid
叶绿素含量
Chlorophyll content (mg m2)
净光合速率
Net photosynthetic rate
(μmol CO2 m-2 s-1)
蒸腾速率
Transpiration rate
(mmol m-2 s-1)
叶片水分利用效率
Leaf water use efficiency (μmol mmol-1)
现代59 Xiandai 59 9.22 bc 33.99 ghi 5.77 a 5.89 efghi
硕秋518 Shuoqiu 518 10.02 abc 35.28 ef 5.87 a 6.01 efgh
京科739 Jingke 739 10.52 a 38.56 a 6.05 a 6.37 defgh
京农科736 Jingnongke 736 9.89 abc 37.52 b 5.70 a 6.58 cdefg
MC738 8.87 c 34.43 fgh 5.47 ab 6.29 defgh
MC812 10.21 ab 33.94 ghi 5.71 a 5.94 efghi
京科528 Jingke 528 10.03 abc 35.16 ef 5.23 abc 6.72 cdefg
京科389 Jingke 389 10.22 ab 35.90 de 5.80 a 6.19 defgh
京单68 Jingdan 68 9.98 abc 36.89 bcd 4.49 abc 8.22 abc
京单58 Jingdan 58 10.02 abc 36.84 bcd 3.86 bc 9.56 a
京单38 Jingdan 38 9.45 abc 32.70 jk 3.76 bc 8.70 ab
丰乐303 Fengle 303 9.23 abc 31.32 lm 3.61 c 8.68 ab
NK718 9.87 abc 33.75 hi 5.25 abc 6.43 defgh
MC565 9.62 abc 32.04 kl 4.43 abc 7.24 bcdef
迪卡159 Dika 159 6.12 d 31.00 m 5.95 a 5.21 ghi
迪卡517 Dika 517 6.32 d 32.47 jk 5.66 a 5.74 efghi
先玉023 Xianyu 023 6.02 d 25.54 o 6.07 a 4.21 i
先玉688 Xianyu 688 5.87 d 33.13 ij 5.74 a 5.78 efghi
郑单958 Zhengdan 958 6.11 d 29.44 n 6.14 a 4.80 hi
先玉335 Xianyu 335 5.86 d 32.99 ijk 5.96 a 5.53 fghi

Fig. 2

Correlation analysis between different indexes of the tested maize varieties LA: leaf angle; LT: light transmittance; CC: chlorophyll content; PN: photosynthetic rate; TR: transpiration rate; WUE: leaf water use efficiency; YD: yield; GMH: grain moisture content at harvest; BR: broken rate; IR: impurity rate; GMPM: grain moisture content after physiological maturity; GDR: grain dehydration rate after physiological maturity; GFR: grain filling rate."

[1] 赵久然, 王荣焕. 中国玉米生产发展历程、存在问题及对策. 中国农业科技导报, 2013, 15(3):1-6.
Zhao J R, Wang R H. Development process, problem and countermeasure of maize production in China. J Agric Sci Technol, 2013, 15(3):1-6 (in Chinese with English abstract).
[2] 李少昆. 玉米机械粒收质量影响因素及粒收技术发展方向. 石河子大学学报(自然科学版), 2017, 35: 265-272.
Li S K. Factors affecting the quality of maize grain mechanical harvest and the development trend of grain harvest technology. J Shihezi Univ (Nat Sci Edn), 2017, 35: 265-272 (in Chinese with English abstract).
[3] 柴宗文, 王克如, 郭银巧, 谢瑞芝, 李璐璐, 明博, 侯鹏, 刘朝巍, 初振东, 张万旭, 张国强, 刘广周, 李少昆. 玉米机械粒收质量现状及其与含水率的关系. 中国农业科学, 2017, 50: 2036-2043.
Chai Z W, Wang K R, Guo Y Q, Xie R Z, Li L L, Ming B, Hou P, Liu C W, Chu Z D, Zhang W X, Zhang G Q, Liu G Z, Li S K. Current status of maize mechanical grain harvesting and its relationship with grain moisture content. Sci Agric Sin, 2017, 50: 2036-2043 (in Chinese with English abstract).
[4] 栗建枝, 李齐霞, 李中青, 祁丽婷, 王敏, 王瑞, 孙万荣. 不同玉米品种籽粒脱水特性. 山西农业科学, 2014, 42: 438-442.
Li J Z, Li Q X, Li Z Q, Qi L T, Wang M, Wang R, Sun W R. Kernel dehydration characteristics of maize varieties. J Shanxi Agric Sci, 2014, 42: 438-442 (in Chinese with English abstract).
[5] 王永宏, 赵如浪, 李红燕, 李少昆. 宁夏引/扬黄灌区玉米密植高产低水分粒收技术模式探索. 玉米科学, 2019, 27(3):122-126.
Wang Y H, Zhao R L, Li H Y, Li S K. Exploration on technology mode of grain mechanical harvest under the condition of low grain moisture and dense planting in Ningxia Yellow River irrigation area. J Maize Sci, 2019, 27(3):122-126 (in Chinese with English abstract).
[6] 王晓慧, 张磊, 刘双利, 曹玉军, 魏雯雯, 刘春光, 王永军, 边少锋, 王立春. 不同熟期春玉米品种的籽粒灌浆特性. 中国农业科学, 2014, 47: 3557-3565.
Wang X H, Zhang L, Liu S L, Cao Y Q, Wei W W, Liu C G, Wang Y J, Bian S F, Wang L C. Grain filling characteristics of maize hybrids differing in maturities. Sci Agric Sin, 2014, 47: 3557-3565 (in Chinese with English abstract).
[7] 陈国平, 高聚林, 赵明, 董树亭, 李少昆, 杨祁峰, 刘永红, 王立春, 薛吉全, 柳京国, 李潮海, 王永宏, 王友德, 宋慧欣, 赵久然. 近年我国玉米超高产田的分布、产量构成及关键技术. 作物学报, 2012, 38: 80-85.
Chen G P, Gao J L, Zhao M, Dong S T, Li S K, Yang Q F, Liu Y H, Wang L C, Xue J Q, Liu J G, Li C H, Wang Y H, Wang Y D, Song H X, Zhao J R. Distribution, yield structure, and key cultural techniques of maize super-high yield plots in recent years. Acta Agron Sin, 2012, 38: 80-85 (in Chinese with English abstract).
[8] 郭江, 肖凯, 郭新宇, 张凤路, 赵春江. 玉米冠层结构、光分布和光合作用研究综述. 玉米科学, 2005, 13(2):55-59.
Guo J, Xiao K, Guo X Y, Zhang F L, Zhao C J. Review on maize canopy structure, light distribution and copy photosynthesis. J Maize Sci, 2005, 13(2):55-59 (in Chinese with English abstract).
[9] 董树亭, 胡昌浩, 岳寿松, 王群瑛, 高荣岐, 潘子龙. 夏玉米群体光合速率特性及其与冠层结构、生态条件的关系. 植物生态学与地植物学学报, 1992, 16: 372-378.
Dong S T, Hu C H, Yue S S, Wang Q Y, Gao R Q, Pan Z L. The characteristics of canopy photosynthesis of summer corn (Zea mays L.) and its relation with canopy structure and ecological conditions. Acta Phytoecol Geobot Sin, 1992, 16: 372-378 (in Chinese with English abstract).
[10] Antonietta M, Fanello D D, Acciaresi H A, Guiamet J J. Senescence and yield responses to plant density in stay green and earlier-senescing maize hybrids from Argentina. Field Crops Res, 2014, 155: 111-119.
doi: 10.1016/j.fcr.2013.09.016
[11] Myunj J L, Kli H S, Myung M O. Increase in biomass and bioactive compounds in lettuce under various ratios of red to far-red LED light supplemented with blue LED light. Hortic Environ Biotechnol, 2016, 57: 139-147.
doi: 10.1007/s13580-016-0133-6
[12] 任军, 周小辉, 岳尧海, 赵万庆, 刘文国, 张志军. 关于玉米株型与性状关系的探讨. 辽宁农业科学, 2007, (3):65-66.
Ren J, Zhou X H, Yue R H, Zhao W Q, Liu W G, Zhang Z J. Probe on relationship between maize plant type and traits. Liaoning Agric Sci, 2007, (3):65-66 (in Chinese with English abstract).
[13] 高佳, 崔海岩, 史建国, 董树亭, 刘鹏, 赵斌, 张吉旺. 花粒期光照对夏玉米光合特性和叶绿体超微结构的影响. 应用生态学报, 2018, 29: 883-890.
Gao J, Cui H Y, Shi J G, Dong S T, Liu P, Zhao B, Zhang J W. Effects of light intensities after anthesis on the photosynthetic characteristics and chloroplast ultrastructure in mesophyll cell of summer maize (Zea mays L.). J Appl Ecol, 2018, 29: 883-890 (in Chinese with English abstract).
[14] 朴琳, 李波, 陈喜昌, 丁在松, 张宇, 赵明, 李从锋. 优化栽培措施对春玉米密植群体冠层结构及产量形成的调控效应. 中国农业科学, 2020, 53: 3048-3058.
Piao L, Li B, Chen X C, Ding Z S, Zhang Y, Zhao M, Li C F. Regulation effects of improved cultivation measures on canopy structure and yield formation of dense spring maize population. Sci Agric Sin, 2020, 53: 3048-3058 (in Chinese with English abstract).
[15] 王克如, 李璐璐, 郭银巧, 范盼盼, 柴宗文, 侯鹏, 谢瑞芝, 李少昆. 不同机械作业对玉米子粒收获质量的影响. 玉米科学, 2016, 24(1):114-116.
Wang K R, Li L L, Guo Y Q, Fan P P, Chai Z W, Hou P, Xie R Z, Li S K. Effects of different mechanical operation on maize grain harvest quality. J Maize Sci, 2016, 24(1):114-116 (in Chinese with English abstract).
[16] 李璐璐, 雷晓鹏, 谢瑞芝, 王克如, 侯鹏, 张凤路, 李少昆. 夏玉米机械粒收质量影响因素分析. 中国农业科学, 2017, 50: 2044-2051.
Li L L, Lei X P, Xie R Z, Wang K R, Hou P, Zhang F L, Li S K. Analysis of influential factors on mechanical grain harvest quality of summer maize. Sci Agric Sin, 2017, 50: 2044-2051 (in Chinese with English abstract).
[17] 李璐璐, 薛军, 谢瑞芝, 王克如, 明博, 侯鹏, 高尚, 李少昆. 夏玉米籽粒含水率对机械粒收质量的影响. 作物学报, 2018, 44: 1747-1754.
Li L L, Xue J, Xie R Z, Wang K R, Ming B, Hou P, Gao S, Li S K. Effects of grain moisture content on mechanical grain harvesting quality of summer maize. Acta Agron Sin, 2018, 44: 1747-1754 (in Chinese with English abstract).
[18] 张万旭, 王克如, 谢瑞芝, 侯鹏, 明博, 刘朝巍, 肖春花, 张国强, 陈江鲁, 杨京京. 玉米机械收获子粒破碎率与含水率关系的品种间差异. 玉米科学, 2018, 26(4):74-78.
Zhang W X, Wang K R, Xie R Z, Hou P, Ming B, Liu C W, Xiao C H, Zhang G Q, Chen J L, Yang J J. Relationship between maize grain broken rate and moisture content as well as the differences among cultivars. J Maize Sci, 2018, 26(4):74-78 (in Chinese with English abstract).
[19] 张宪政. 植物叶绿素含量测定——丙酮乙醇混合液法. 辽宁农业科学, 1986, (3):26-28.
Zhang X Z. Determination of plant chlorophyll content— Acetonethanol mixture method. Liaoning Agric Sci, 1986, (3):26-28 (in Chinese with English abstract).
[20] 朱庆森, 曹显祖, 骆亦其. 水稻籽粒的生长分析. 作物学报, 1988, 14: 182-193.
Zhu Q S, Cao X Z, Luo Y Q. Growth analysis on the process of grain filling in rice. Acta Agron Sin, 1988, 14: 182-193 (in Chinese with English abstract).
[21] 王荣焕, 徐田军, 赵久然, 王元东, 吕天放, 邢锦丰, 刘月娥, 刘秀芝, 刘春阁, 张一弛. 播期和密度对玉米子粒机收主要性状的影响. 玉米科学, 2017, 25(3):94-98.
Wang R H, Xu T J, Zhao J R, Wang Y D, Lyu T F, Xing J F, Liu Y Y, Liu X Z, Liu C G, Zhang Y C. Effects of sowing date and planting density on maize grain mechanical harvesting related traits. J Maize Sci, 2017, 25(3):94-98 (in Chinese with English abstract).
[22] 柏延文, 杨永红, 朱亚利, 李红杰, 薛吉全, 张仁和. 种植密度对不同株型玉米冠层光能截获和产量的影响. 作物学报, 2019, 45: 1868-1879.
doi: 10.3724/SP.J.1006.2019.93011
Bai Y W, Yang Y H, Zhu Y L, Li H J, Xue J Q, Zhang R H. Effect of planting density on light interception within canopy and grain yield of different plant types of maize. Acta Agron Sin, 2019, 45: 1868-1879 (in Chinese with English abstract).
[23] 张春雨, 白晶, 丁相鹏, 张吉旺, 刘鹏, 任佰朝, 赵斌. 错株增密种植对夏玉米光合特性及产量的影响. 中国农业科学, 2020, 53: 3928-3941.
Zhang C Y, Bai J, Ding X P, Zhang J W, Ren B Z, Zhao B. Effects of staggered planting with increased density on the photosynthetic characteristics and yield of summer maize. Sci Agric Sin, 2020, 53: 3928-3941 (in Chinese with English abstract).
[24] 张仁和, 胡富亮, 杨晓钦, 高杰, 郝引川, 张兴华, 薛吉全. 不同栽培模式对旱地春玉米光合特性和水分利用率的影响. 作物学报, 2013, 39: 1619-1627.
doi: 10.3724/SP.J.1006.2013.01619
Zhang R H, Hu F L, Yang X Q, Gao J, Hao Y C, Zhang X H, Xue J Q. Effects of different cultivation patterns on photosynthetic characteristics and water use efficiency in dry land spring maize. Acta Agron Sin, 2013, 39: 1619-1627 (in Chinese with English abstract).
[25] 刘广周. 产量潜力22.5 t hm-2玉米理想株型及群体结构研究. 中国农业科学院博士学位论文, 北京, 2019.
Liu G Z. Research on Maize (Zea mays L.) Ideotype and Canopy Structure with Yield Potential of 22.5 t hm-2. PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2019 (in Chinese with English abstract).
[26] 黄振喜, 王永军, 王空军, 李登海, 赵明, 柳京国, 董树亭, 王洪军, 王军海, 杨今胜. 产量15000 kg hm-2以上夏玉米灌浆期间的光合特性. 中国农业科学, 2007, 40: 1898-1906.
Huang Z X, Wang Y J, Wang K J, Li D H, Zhao M, Liu J G, Dong S T, Wang H J, Wang J H, Yang J S. Photosynthetic characteristics during grain filling stage of summer maize hybrids with high yield potential of 15000 kg ha-1. Sci Agric Sin, 2007, 40: 1898-1906 (in Chinese with English abstract).
[27] Pierik R, Wit M D. Shade avoidance: Phytochrome signaling and other aboveground neighbour detection cues. J Exp Bot, 2014, 65: 2815-2824.
doi: 10.1093/jxb/ert389
[28] 李静, 王洪章, 许佳诣, 刘鹏, 张吉旺, 赵斌, 任佰朝. 不同栽培模式对夏玉米冠层结构及光合性能的影响. 中国农业科学, 2020, 53: 4550-4560.
Li J, Wang H Z, Xu J Z, Liu P, Zhang J W, Zhao B, Ren B Z. Effects of different cultivation modes on canopy structure and photosynthetic performance of summer maize. Sci Agric Sin, 2020, 53: 4550-4560 (in Chinese with English abstract).
[29] 刘铁宁, 徐彩龙, 谷利敏, 董树亭. 高密度种植条件下去叶对不同株型夏玉米群体及单叶光合性能的调控. 作物学报, 2014, 40: 143-153.
Liu T N, Xu C L, Gu L M, Dong S T. Effects of leaf removal on canopy apparent photosynthesis and individual leaf photosynthetic characteristics in summer maize under high plant density. Acta Agron Sin, 2014, 40: 143-153 (in Chinese with English abstract).
[30] 张万旭. 北疆春玉米机收质量及籽粒脱水特征研究. 石河子大学硕士学位论文, 新疆石河子, 2018.
Zhang W X. Study on Maize Mechanical Grain Harvest Quality and Grain Dehydration Characteristics of Spring Maize in Northern Xinjiang. MS Thesis of Shihezi University, Shihezi, Xinjiang, China, 2018 (in Chinese with English abstract).
[31] 中华人民共和国国家质量监督检验检疫总局和中国国家标准化管理委员会. 玉米收获机械技术条件: GB/T 21962-2008
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China; China National Standardization Management Committee. Technical Requirements for Maize Combine Harvester: GB/T 21962-2008 (in Chinese).
[1] SHI Yan-Yan, MA Zhi-Hua, WU Chun-Hua, ZHOU Yong-Jin, LI Rong. Effects of ridge tillage with film mulching in furrow on photosynthetic characteristics of potato and yield formation in dryland farming [J]. Acta Agronomica Sinica, 2022, 48(5): 1288-1297.
[2] ZHANG Yun, WANG Dan-Mei, WANG Xiao-Yuan, REN Qing-Wen, TANG Ke, ZHANG Li-Yu, WU Yu-Huan, LIU Peng. Effects of exogenous jasmonic acid on photosynthetic characteristics and cadmium accumulation of Helianthus tuberosus L. under cadmium stress [J]. Acta Agronomica Sinica, 2021, 47(12): 2490-2500.
[3] FENG Ke-Yun, WANG Ning, NAN Hong-Yu, GAO Jian-Gang. Effects of chemical fertilizer reduction with organic fertilizer application under water deficit on photosynthetic characteristics and yield of cotton [J]. Acta Agronomica Sinica, 2021, 47(1): 125-137.
[4] DU Jin-Yong,CHAI Qiang,WANG Yi-Fan,FAN Hong,HU Fa-Long,YIN Wen,LI Deng-Ye. Effect of above- and below-ground interaction intensity on photosynthetic characteristics of wheat-maize intercropping [J]. Acta Agronomica Sinica, 2019, 45(9): 1398-1406.
[5] LI Chao-Su,WU Xiao-Li,TANG Yong-Lu,LI Jun,MA Xiao-Ling,LI Shi-Zhao,HUANG Ming-Bo,LIU Miao. Response of yield and associated physiological characteristics for different wheat cultivars to nitrogen stress at mid-late growth stage [J]. Acta Agronomica Sinica, 2019, 45(8): 1260-1269.
[6] Yong-Fu REN,Guo-Peng CHEN,Tian PU,Cheng CHEN,Jin-Xi ZENG,Xiao PENG,Yan-Wei MA,Wen-Yu YANG,Xiao-Chun WANG. Responses of photosynthetic characteristics to low light stress in ear leaves of high photosynthetic efficiency maize at narrow row of maize-soybean strip intercropping system [J]. Acta Agronomica Sinica, 2019, 45(5): 728-739.
[7] Si-Long CHEN,Zeng-Shu CHENG,Ya-Hui SONG,Jin WANG,Yi-Jie LIU,Peng-Juan ZHANG,Yu-Rong LI. Leaf photosynthesis and matter production dynamic characteristics of peanut varieties with high yield and high oil content [J]. Acta Agronomica Sinica, 2019, 45(2): 276-288.
[8] Hai-Yue YU,Yan YAN,Yu-Shi ZHANG,Ming-Cai ZHANG,Zhao-Hu LI. Regulatory effects of coronatine on photosynthetic characteristics and yield of soybean under different irrigation conditions [J]. Acta Agronomica Sinica, 2019, 45(12): 1851-1858.
[9] Yan-Wen BAI,Yong-Hong YANG,Ya-Li ZHU,Hong-Jie LI,Ji-Quan XUE,Ren-He ZHANG. Effect of planting density on light interception within canopy and grain yield of different plant types of maize [J]. Acta Agronomica Sinica, 2019, 45(12): 1868-1879.
[10] Yang GAO,Wei-Guo LIU,Shu-Xian LI,Ting LIU,Tao ZHOU,Yong-Li DU,Yi ZHANG,Bi-Qin LI,Wen-Yu YANG. Effect of shade priming on photosynthetic characteristics of soybean seedlings [J]. Acta Agronomica Sinica, 2019, 45(1): 91-99.
[11] Hong-Liang SHI,Qing-Qing YAN,Ju-Song ZHANG,Chun-Yan LI,Hai-Tao DOU. Compensation Effect of Nitrogen Fertilizer on Photosynthetic Characteristics and Yield during Cotton Flowering Boll-setting Stage under Non-sufficient Drip Irrigation [J]. Acta Agronomica Sinica, 2018, 44(8): 1196-1204.
[12] Dan-Dan HU,Ji-Wang ZHANG,Peng LIU,Bin ZHAO,Shu-Ting DONG. Effects of Mixed-cropping with Different Varieties on Photosynthetic Characteristics and Yield of Summer Maize under Close Planting Condition [J]. Acta Agronomica Sinica, 2018, 44(6): 920-930.
[13] Ya-Jiao CHENG,Yuan-Fang FAN,Jun-Xu CHEN,Zhong-Lin WANG,Ting-Ting TAN,Jia-Feng LI,Sheng-Lan LI,Feng YANG,Wen-Yu YANG. Effects of Light Intensity on Photosynthetic Characteristics and Assimilates of Soybean Leaf [J]. Acta Agronomica Sinica, 2018, 44(12): 1867-1874.
[14] Tian-Jun XU, Tian-Fang LYU, Jiu-Ran ZHAO, Rong-Huan WANG, Chuan-Yong CHEN, Yue-E LIU, Xiu-Zhi LIU, Yuan-Dong WANG, Chun-Ge LIU. Photosynthetic Characteristics, Dry Matter Accumulation and Translocation, Grain Filling Parameter of Three Main Maize Varieties in Production [J]. Acta Agronomica Sinica, 2018, 44(03): 414-422.
[15] LIU Hong-Yan, ZHOU Fang, LI Jun, YANG Min-Min, ZHOU Ting, HAO Guo-Cun,ZHAO Ying-Zhong . Anatomical Structure and Photosynthetic Characteristics of a Yellow Leaf Mutant YL1 in Sesame (Sesamum indicum L.) [J]. Acta Agron Sin, 2017, 43(12): 1856-1863.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!