Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (5): 1426-1431.doi: 10.3724/SP.J.1006.2023.22025

• RESEARCH NOTES • Previous Articles     Next Articles

Identification and gene mapping of brittle culm mutant bc21 in rice

DAI Wen-Hui1,2(), ZHU Qi1,2, ZHANG Xiao-Fang1,2, LYU Shen-Yang1, XIANG Xian-Bo3, MA Tao1, CHEN Yu-Jie1, ZHU Shi-Hua1, DING Wo-Na1,*()   

  1. 1College of Science and Technology, Ningbo University, Ningbo 315212, Zhejiang, China
    2School of Marine Science, Ningbo University, Ningbo 315211, Zhejiang, China
    3Pingyang Administration for Market Regulation, Wenzhou 325400, Zhejiang, China
  • Received:2022-04-27 Accepted:2022-07-22 Online:2023-05-12 Published:2022-08-12
  • Contact: *E-mail: dwn@zju.edu.cn
  • Supported by:
    National Natural Science Foundation of China(32071981);Key Project of Ningbo Natural Science Foundation(202003N4016)

Abstract:

A brittle culm mutant bc21 was obtained by mutagenesis of indica rice Kasalath with ethyl methanesulfonate (EMS). Phenotypic analysis revealed that the mutant displayed both brittle culm and leaf phenotypes, which began to manifest at seedling stage and were most pronounced at mature stage. The mechanical strength analysis showed that the breaking resistance and tensile force of bc21 stems decreased significantly. Resin sections and scanning electron microscope observation showed that the sclerenchyma cells of bc21 culms had increased voids and thinner cell walls. Compared with the wild type, the cell wall component of stems revealed that the cellulose content of bc21 decreased by 36.60%, and the hemicellulose and lignin contents increased by 23.08% and 26.06%, respectively. Genetic analysis indicated that the brittle trait of bc21 was controlled by a single recessive gene. Using SSR markers and self-designed STS markers, BC21 was located in a 52.9 kb region between the markers STS2 and STS3 on chromosome 6, and there was no previously reported rice brittleness-related gene within this region, indicating that BC21 might be a new brittle culm gene in rice. This study will provide material support for further dissection of the regulation mechanism of mechanical strength of rice stems.

Key words: rice, brittle culm mutant, cell wall, cellulose, gene mapping

Fig. 1

Broken phenotypes of wild type (WT) and mutant bc21 stems and leaves at maturity stage A: the broken phenotypes of stems; B: the broken phenotypes of leaves. WT: Kasalath; bc21: brittle culm 21."

Fig. 2

Breaking resistance (A) and tensile force (B) of the second internodes of wild type (WT) and mutant bc21 * represents significant difference at the 0.05 probability level; ** represents significant differences at the 0.01 probability level. WT: Kasalath; bc21: brittle culm 21."

Fig. 3

Cross section of wild type and mutant bc21 in nodes A: the observation on resin slices of wild type stem cross section (bar: 100 μm); B: the observation on resin slices of bc21 stem cross section (bar: 100 μm); C: the scanning electron microscope observation of wild type stem cross section (bar: 20 μm); D: the scanning electron microscope observation of bc21 stem cross section (bar: 20 μm)."

Fig. 4

Cellulose, hemicellulose, and lignin content in wild type (WT) and mutant bc21 * represents significant differences at the 0.05 probability level. WT: Kasalath; bc21: brittle culm 21."

Table 1

SSR and STS molecular markers for mapping"

标记
Marker name
正向引物
Forward primer (5'-3')
反向引物
Reverse primer (5'-3')
RM6734 TGAGCAGTCTGCAGATGACC GCTTGGACTTGGAGTCTTGG
STS1 ACCAGGCTGAATGTATAGAT TTAGGCACATAAACCAAG
STS2 AAAATTGTAGTGGGTTGGT TACAGAGAAAAAGATTGAAGC
STS3 CAGTGATTCGTTTGAAAT CCCTGTTGTTTGTATGAC
RM253 TCCTTCAAGAGTGCAAAACC GCATTGTCATGTCGAAGCC

Fig. 5

Fine mapping of BC21 on rice chromosome 6"

Table 2

Gene names and their putative functions in the target interval"

基因名称Gene name 推测功能Putative function
LOC_Os06g09570 核仁GTP结合蛋白1 Nucleolar GTP-binding protein 1
LOC_Os06g09580 转座子蛋白 Transposon protein, putative
LOC_Os06g09600 表达蛋白 Expressed protein
LOC_Os06g09610 过氧化物还原酶 Peroxiredoxin
LOC_Os06g09620 表达蛋白 Expressed protein
LOC_Os06g09630 3-氧化酰基合酶 3-oxoacyl-synthase
LOC_Os06g09640 反转录转座子蛋白 Retrotransposon protein
LOC_Os06g09650 反转录转座子蛋白 Retrotransposon protein
[1] 王庭杰. 水稻茎组织构建与木质素代谢对抗倒伏的影响. 河南师范大学硕士学位论文, 河南新乡, 2015.
Wang T J. Effects of Stalk Tissue and Lignin Metabolism on the Lodging Resistance of Rice. MS Thesis of Henan Normal University, Xinxiang, Henan, China, 2015. (in Chinese with English abstract)
[2] Zhang R, Hu H Z, Wang Y M, Hu Z, Ren S F, Li J Y, He B Y, Wang Y T, Xia T, Chen P, Xie G S, Peng L C. A novel rice fragile culm 24 mutant encodes a UDP-glucose epimerase that affects cell wall properties and photosynthesis. J Exp Bot, 2020, 71: 2956-2969.
doi: 10.1093/jxb/eraa044 pmid: 32064495
[3] Kotake T, Aohara T, Hirano K, Sato A, Kaneko Y, Tsumuraya Y, Takatsuji H, Kawasaki S. Rice Brittle Culm 6 encodes a dominant negative form of CesA protein that perturbs cellulose synthesis in secondary cell walls. J Exp Bot, 2011, 62: 2053-2062.
doi: 10.1093/jxb/erq395
[4] Song X Q, Liu L F, Jiang Y J, Zhang B C, Gao Y P, Liu X L, Lin Q S, Ling H Q, Zhou Y H. Disruption of secondary wall cellulose biosynthesis alters cadmium translocation and tolerance in rice plants. Mol Plant, 2013, 3: 768-780.
[5] 李晓静, 徐多多, 徐益敏, 翟开恩, 杨窑龙, 潘建伟, 饶玉春. 水稻纤维素合酶催化亚基的编码基因BC88的表达分析. 中国水稻科学, 2015, 29: 126-134.
Li X J, Xu D D, Xu Y M, Cui K N, Yang Y L, Pan J W, Rao Y C. Expression of OsBC88, a rice cellulose synthase catalytic subunit gene. Chin J Rice Sci, 2015, 29: 126-134. (in Chinese with English abstract)
[6] Yan C J, Yan S, Zeng X H, Zhang Z Q, Gu M H. Fine mapping and isolation of Bc7(t), allelic to OsCesA4. J Genet Genom, 2007, 34: 1019-1027.
doi: 10.1016/S1673-8527(07)60115-5
[7] Zhang B C, Deng L W, Qian Q, Xiong G Y, Zeng D L, Li R, Guo L B, Li J Y, Zhou Y H. A missense mutation in the transmembrane domain of CESA4 affects protein abundance in the plasma membrane and results in abnormal cell wall biosynthesis in rice. Plant Mol Biol, 2009, 71: 509-524.
doi: 10.1007/s11103-009-9536-4 pmid: 19697141
[8] Li Y H, Qian Q, Zhou Y H, Yan M X, Sun L, Zhang M, Fu Z M, Wang Y H, Han B, Pang X M, Chen M S, Li J Y. BRITTLE CULM 1, which encodes a COBRA-like protein, affects the mechanical properties of rice plants. Plant Cell, 2003, 15: 2020-2031.
doi: 10.1105/tpc.011775
[9] Hirano K, Kotake T, Kamihara K, Tsuna K, Aohara T, Kaneko Y, Takatsuji H, Tsumuraya Y, Kawasaki S. Rice BRITTLE CULM 3 (BC3) encodes a classical dynamin OsDRP2B essential for proper secondary cell wall synthesis. Planta, 2010, 232: 95-108.
doi: 10.1007/s00425-010-1145-6 pmid: 20369251
[10] Zhou Y H, Li S B, Qian Q, Zeng D L, Zhang M, Guo L B, Liu X L, Zhang B C, Deng L W, Liu X F, Luo G Z, Wang X J, Li J Y. BC10, a DUF266-containing and Golgi-located type II membrane protein, is required for cell-wall biosynthesis in rice (Oryza sativa L.). Plant J, 2009, 57: 446-462.
doi: 10.1111/tpj.2009.57.issue-3
[11] Zhang M, Zhang B C, Qian Q, Yu Y C, Li R, Zhang J W, Liu X L, Zeng D L, Li J Y, Zhou Y H. Brittle Culm 12, a dual-targeting kinesin-4 protein, controls cell-cycle progression and wall properties in rice. Plant J, 2010, 63: 312-328.
doi: 10.1111/tpj.2010.63.issue-2
[12] Zhang B C, Liu X L, Qian Q, Liu L F, Dong G J, Xiong G Y, Zeng D L, Zhou Y H. Golgi nucleotide sugar transporter modulates cell wall biosynthesis and plant growth in rice. Proc Natl Acad Sci USA, 2011, 108: 5110-5115.
doi: 10.1073/pnas.1016144108 pmid: 21383162
[13] Wu B, Zhang B C, Dai Y, Zhang L, Shang-Guan K K, Peng Y G, Zhou Y H, Zhu Z. Brittle Culm 15 encodes a membrane- associated chitinase-like protein required for cellulose biosynthesis in rice. Plant Physiol, 2012, 159: 1440-1452.
doi: 10.1104/pp.112.195529
[14] 许作鹏. 水稻茎秆强度相关性状QTL分析及基因克隆. 扬州大学博士学位论文, 江苏扬州, 2017.
Xu Z P. Mapping of QTLs and Cloning of Genes Related to the Culm Mechanical Strength in Rice (Oryza sativa L.). PhD Dissertation of Yangzhou University, Yangzhou, Jiangsu, China, 2017. (in Chinese with English abstract)
[15] 靳振明, 平宝哲, 沈浩珺, 杜淮清, 李瑞乾, 朱璐, 张大兵, 袁政. 水稻脆秆突变体bc-s1的表型分析和基因定位. 植物学报, 2016, 51: 167-174.
doi: 10.11983/CBB15048
Jin Z M, Ping B Z, Shen H J, Du H Q, Li R Q, Zhu L, Zhang D B, Yuan Z. Phenotypic analysis and gene mapping of rice brittle culm mutant bc-s1. Chin Bull Bot, 2016, 51: 167-174. (in Chinese with English abstract)
[16] 王川丽, 王令强, 牟同敏. 水稻脆性突变体nbc(t)的主要特性和脆性基因的初步定位. 华中农业大学学报, 2012, 31(2): 159-164.
Wang C L, Wang L Q, Mou T M. Main characteristics of rice brittle mutant nbc(t) and preliminary localization of brittle genes. J Huazhong Agric Univ, 2012, 31(2): 159-164. (in Chinese with English abstract)
[17] Li P, Liu Y R, Tan W Q, Chen J, Zhu M J, Lyu Y, Liu Y S, Yu S C, Zhang W J, Cai H W. Brittle Culm 1 encodes a COBRA-Like protein involved in secondary cell wall cellulose biosynthesis in sorghum. Plant Cell Physiol, 2019, 60: 788-801.
doi: 10.1093/pcp/pcy246
[18] Aohara T, Kotake T, Kaneko Y, Takatsuji H, Tsumuraya Y, Kawasaki S. Rice BRITTLE CULM 5(BRITTLE NODE) is involved in secondary cell wall formation in the sclerenchyma tissue of nodes. Plant Cell Physiol, 2009, 50: 1886-1897.
doi: 10.1093/pcp/pcp133
[19] Wang Y, Ren Y L, Chen S H, Xu Y, Zhou K N, Zhang L, Ming M, Wu F Q, Lin Q B, Wang J L, Guo X P, Zhang X, Lei C L, Cheng Z J, Wan J M. BRITTLE CULM16 (BRITTLE NODE) is required for the formation of secondary cell walls in rice nodes. J Integr Agric, 2017, 16: 1286-1293.
doi: 10.1016/S2095-3119(16)61536-8
[20] De L G, Ferrari S, Giovannoni M, Mattei B, Cervone F. Cell wall traits that influence plant development, immunity, and bioconversion. Plant J, 2019, 97: 134-147.
[21] Li F C, Zhang M L, Guo K, Hu Z, Zhang R, Feng Y Q, Yi X Y, Zou W H, Wang L Q, Wu C Y, Tian J S, Lu T G, Xie G S, Peng L C. High-level hemicellulosic arabinose predominately affects lignocellulose crystallinity for genetically enhancing both plant lodging resistance and biomass enzymatic digestibility in rice mutants. Plant Biotechnol J, 2015, 13: 514-525.
doi: 10.1111/pbi.12276 pmid: 25418842
[22] 赵小红, 白羿雄, 姚有华, 安立昆, 吴昆仑. 禾谷类作物茎秆特性与茎倒伏关系的研究. 植物生理学报, 2021, 57: 257-264.
Zhao X H, Bai Y X, Yao Y H, An L K, Wu K L. Research progress on the relationship between stem characteristics and crop stem lodging. Plant Physiol J, 2021, 57: 257-264. (in Chinese with English abstract)
doi: 10.1104/pp.57.2.257
[23] 姜鸿瑞, 叶亚峰, 何丹, 任艳, 杨阳, 谢建, 程维民, 陶亮之, 周利斌, 吴跃进, 刘斌美. 一个新的水稻脆秆突变体bc17的鉴定及基因定位. 作物学报, 2021, 47: 71-79.
doi: 10.3724/SP.J.1006.2021.02025
Jiang H R, Ye Y F, He D, Ren Y, Yang Y, Xie J, Cheng W M, Tao L Z, Zhou L B, Wu Y J, Liu B M. Identification and gene localization of a novel rice brittle culm mutant bc17. Acta Agron Sin, 2021, 47: 71-79. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.02025
[24] Ye Y F, Wang S X, Wu K, Ren Y, Jiang H R, Chen J F, Tao L Z, Fu X D, Liu B M, Wu Y J. A semi-dominant mutation in OsCESA9 improves salt tolerance and favors field straw decay traits by altering cell wall properties in rice. Rice, 2021, 14: 19.
doi: 10.1186/s12284-021-00457-0 pmid: 33595759
[25] Su Y J, Zhao G Q, Wei Z W, Yan C J, Liu S J. Mutation of cellulose synthase gene improves the nutritive value of rice straw. Asian-Aust J Anim Sci, 2012, 25: 800-805.
doi: 10.5713/ajas.2011.11409
[26] 陆荷微, 刘斌美, 陶亮之, 叶亚峰, 吴振宇, 范爽, 吴跃进, 王钰. 水稻脆茎突变体的主要性状比较研究. 杂交水稻, 2017, 32(5): 51-55.
Lu H W, Liu B M, Tao L Z, Ye Y F, Wu Z Y, Fan S, Wu Y J, Wang Y. Comparative studies of major characteristics of rice brittle culm mutants. Hybrid Rice, 2017, 32(5): 51-55. (in Chinese with English abstract)
[1] LIN Xiao-Xin, HUANG Ming-Jiang, WEI Yi, ZHU Hong-Hui, WANG Zi-Yi, LI Zhong-Cheng, ZHUANG Hui, LI Yan-Xi, LI Yun-Feng, CHEN Rui. Identification and gene mapping of long grain and degenerated palea (lgdp) in rice (Oryza sativa L.)#br# [J]. Acta Agronomica Sinica, 2023, 49(6): 1699-1707.
[2] XU Ran, CHEN Song, XU Chun-Mei, LIU Yuan-Hui, ZHANG Xiu-Fu, WANG Dan-Ying, CHU Guang. Effects of nitrogen fertilizer rates on grain yield and nitrogen use efficiency of japonica-indica hybrid rice cultivar Yongyou 1540 and its physiological bases [J]. Acta Agronomica Sinica, 2023, 49(6): 1630-1642.
[3] TIAN Min, LIU Xin-Chun, PAN Jia-Jia, LIANG Li-Jing, DONG Lei, LIU Mei-Chi, FENG Zong-Yun. Genome-wide association analysis of cellulose content and hemicellulose content in grains of barley [J]. Acta Agronomica Sinica, 2023, 49(6): 1726-1732.
[4] DING Jie-Rong, MA Ya-Mei, PAN Fa-Zhi, IANG Li-Qun, SUN Bing-Rui, ZHANG Jing, Lyu Shu-Wei, MAO Xing-Xue, YU Hang, LI Chen, LIU Qin. Ubiquitin receptor protein OsDSK2b plays a negative role in rice leaf blast resistance and osmotic stress tolerance [J]. Acta Agronomica Sinica, 2023, 49(6): 1466-1479.
[5] HE Yong-Ming, ZHANG Fang. Study of regulating effect of auxin on floret opening in rice [J]. Acta Agronomica Sinica, 2023, 49(6): 1690-1698.
[6] TAO Yue-Yue, SHENG Xue-Wen, XU Jian, SHEN Yuan, WANG Hai-Hou, LU Chang-Ying, SHEN Ming-Xing. Characteristics of heat and solar resources allocation and utilization in rice- oilseed rape double cropping systems in the Yangtze River Delta [J]. Acta Agronomica Sinica, 2023, 49(5): 1327-1338.
[7] WEI Hai-Min, TAO Wei-Ke, ZHOU Yan, YAN Fei-Yu, LI Wei-Wei, DING Yan-Feng, LIU Zheng-Hui, LI Gang-Hua. Panicle silicon fertilizer optimizes the absorption and distribution of mineral elements in rice (Oryza sativa L.) in coastal saline-alkali soil to improve salt tolerance [J]. Acta Agronomica Sinica, 2023, 49(5): 1339-1349.
[8] LIU Er-Hua, ZHOU Guang-Sheng, WU Bing-Yi, SONG Yan-Ling, HE Qi-Jin, LYU Xiao-Min, ZHOU Meng-Zi. Response of reproductive growth period length to climate warming and technological progress in the middle and lower reaches of the Yangtze River during 1981-2010 in single-cropping rice [J]. Acta Agronomica Sinica, 2023, 49(5): 1305-1315.
[9] TANG Wen-Qiang, ZHANG Wen-Long, ZHU Xiao-Qiao, DONG Bi-Zheng, LI Yong-Cheng, YANG Nan, ZHANG Yao, WANG Yun-Yue, HAN Guang-Yu. Effects of diverse mixture intercropping on the structure and function of bacterial communities in rice rhizosphere [J]. Acta Agronomica Sinica, 2023, 49(4): 1111-1121.
[10] ZHANG Chen-Hui, ZHANG Yan, LI Guo-Hui, YANG Zi-Jun, ZHA Ying-Ying, ZHOU Chi-Yan, XU Ke, HUO Zhong-Yang, DAI Qi-Gen, GUO Bao-Wei. Root morphology and physiological characteristics for high yield formation under side-deep fertilization in rice [J]. Acta Agronomica Sinica, 2023, 49(4): 1039-1051.
[11] YAN Xin, XIANG Chao, LIU Rong, LI Guan, LI Meng-Wei, LI Zheng-Li, ZONG Xu-Xiao, YANG Tao. Fine mapping of flower colour gene in pea (Pisum sativum L.) based on BSA-seq technique [J]. Acta Agronomica Sinica, 2023, 49(4): 1006-1015.
[12] LI Qiu-Ping, ZHANG Chun-Long, YANG Hong, WANG Tuo, LI Juan, JIN Shou-Lin, HUANG Da-Jun, LI Dan-Dan, WEN Jian-Cheng. Physiological characteristics analysis and gene mapping of a semi-sterility plant mutant sfp10 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2023, 49(3): 634-646.
[13] XIANG Si-Qian, LI Ru-Xiang, XU Guang-Yi, DENG Ke-Li, YU Jin-Jin, LI Miao-Miao, YANG Zheng-Lin, LING Ying-Hua, SANG Xian-Chun, HE Guang-Hua, ZHAO Fang-Ming. Identification and pyramid analysis of QTLs for grain size based on rice long-large-grain chromosome segment substitution line Z66 [J]. Acta Agronomica Sinica, 2023, 49(3): 731-743.
[14] LIU Li-Jun, ZHOU Shen-Qi, LIU Kun, ZHANG Wei-Yang, YANG Jian-Chang. Research progress on the formation of large panicles in rice and its regulation [J]. Acta Agronomica Sinica, 2023, 49(3): 585-596.
[15] ZHU Xiao-Tong, YE Ya-Feng, GUO Jun-Yao, YANG Hui-Jie, WANG Zi-Yao, ZHAN Yue, WU Yue-Jin, TAO Liang-Zhi, MA Bo-Jun, CHEN Xi-Feng, LIU Bin-Mei. Heredity and fine mapping of an early-senescence leaf gene ESL8 in rice [J]. Acta Agronomica Sinica, 2023, 49(3): 662-671.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .