Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (6): 1678-1689.doi: 10.3724/SP.J.1006.2023.21039

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of foliar spraying selenium on photosynthetic characteristics, yield, and selenium accumulation of common buckwheat (Fagopyrum esculentum M.)

LEI Xin-Hui1,**(), LENG Jia-Jun1,**(), TAO Jin-Cai1, WAN Chen-Xi1, WU Yi-Xin1, WANG Jia-Le1, WANG Peng-Ke1, FENG Bai-Li1, WANG Meng2, GAO Jin-Feng1,*()   

  1. 1Agricultural College of Northwest A&F University/State Key Laboratory of Crop Stress Physiology in Arid Areas, Yangling 712100, Shaanxi, China
    2Yulin Academy of Agricultural Sciences, Yulin 719000, Shaanxi, China
  • Received:2022-06-01 Accepted:2022-10-10 Online:2023-06-12 Published:2022-10-19
  • Contact: *E-mail: gaojf7604@126.com
  • About author:First author contact:**Contributed equally to this work
  • Supported by:
    National Key Research and Development Program of China(2020YFD1000805-03);National Natural Science Foundation of China(31671631);Science and Technology Key Research & Development Project of Shaanxi Province(2022NY-178);Technical System of Minor Cereals Industry in Shaanxi Province(NYKJ-2021-YL(XN)40)

Abstract:

Dietary selenium supplementation is the main way for people to take in selenium. Selenium bioaugmentation technology can effectively improve the selenium content of crops. In this study, the material was common buckwheat variety Xinong 9976, and sodium selenite was used as the selenium source. The application rates of pure selenium in the field were 0 (Se0), 5 (Se5), and 20 g hm-2 (Se20), respectively. The changes of photosynthetic characteristics, dry matter accumulation and transport, agronomic traits, and yield of common buckwheat were explored during two consecutive crop growing seasons from 2020 to 2021, and the effects of selenium content in organs, selenium transport factors and selenium utilization rate in grains of common buckwheat under different exogenous selenium concentrations were analyzed. The results showed that foliar spraying sodium selenite could improve the photosynthetic substance production capacity of common buckwheat leaves, and the chlorophyll content (SPAD), net photosynthetic rate (Pn), transpiration rate (Tr), intercellular CO2 concentration (Ci), and water use efficiency (WUE) of leaves increased by 13.12%, 11.50%, 5.48%, 5.95%, and 5.77% on average compared with the control. Selenium spraying significantly increased the maximum photochemical efficiency (Fv/Fm), actual photochemical efficiency (ΦPSII), and photochemical quenching coefficient (qp) of buckwheat leaf photosystem II, decreased the non-photochemical quenching coefficient (NPQ), enhanced the ability of capturing and transforming light energy, reduced the loss of ineffective light energy, and improved the utilization ability of high light. Under two different selenium application rates, the dry matter accumulation of stem and leaf of Fagopyrum esculentum was significantly higher than that of Se0 treatment, but the distribution ratio was significantly lower. The dry matter accumulation and dry matter distribution ratio of grain were improved. The dry matter transport capacity, migration rate, and contribution rate of stem and leaf to grain reached the maximum at Se5 and Se20 concentrations, respectively. Selenium spraying increased the number of 1000-grain weight, grain number per plant, and yield by 3.1%-11.3%, 13.5%-32.0%, and 4.9%-23.2% compared with the control, respectively. The selenium content and transport factors in different parts of common buckwheat reached the maximum under Se20, while the utilization rate of selenium in grain was higher under Se5. In conclusion, foliar spraying of sodium selenite can improve photosynthesis and chlorophyll fluorescence parameters of common buckwheat, increase the accumulation of dry matter in various organs, and promote the transport of dry matter to grains, thus increasing the grain yield of common buckwheat. In addition, the selenium content in all parts of common buckwheat was significantly increased after foliar spraying with selenium, and the selenium utilization rate of grain was the highest under Se5 treatment, and the selenium content of grain met the national grain selenium-enriched standard, which was suitable for popularization and application in Loess Plateau area.

Key words: common buckwheat, sodium selenite, photosynthetic characteristics, chlorophyll fluorescence, yield, selenium content

Fig. 1

Effect of foliar spraying of sodium selenite on the relative content of chlorophyll in common buckwheat Different lowercase letters are significantly different at the 0.05 probability level. Se0 represents spraying concentration of 0 g hm-2, Se5 represents spraying concentration of 5 g hm-2, Se20 represents spraying concentration of 20 g hm-2."

Fig. 2

Effect of foliar spraying of sodium selenite on gas exchange parameters of common buckwheat A: the effect of foliar spraying of sodium selenite on net photosynthetic rate of common buckwheat; B: the effect of foliar spraying of sodium selenite on cellular CO2 concentration of common buckwheat; C: the effect of foliar spraying of sodium selenite on transpiration rate of common buckwheat; D: the effect of foliar spraying of sodium selenite on water use efficiency of common buckwheat. Different lowercase letters are significantly different at the 0.05 probability level. Treatments are the same as those given in Fig. 1."

Fig. 3

Effect of spraying sodium selenite on chlorophyll fluorescence parameters of common buckwheat A: the effect of foliar spraying of sodium selenite on the PSII maximum photochemical efficiency of common buckwheat; B: the effect of foliar spraying of sodium selenite on the PSII actual photochemical efficiency of common buckwheat; C: the effect of foliar spraying of sodium selenite on the PSII non-photochemical quenching coefficient of common buckwheat; D: the effect of foliar spraying of sodium selenite on PSII photochemical quenching coefficient of common buckwheat. Different lowercase letters are significantly different at the 0.05 probability level. Treatments are the same as those given in Fig. 1."

Table 1

Effect of spraying sodium selenite on dynamic accumulation of dry matter in different organs of common buckwheat (g)"

年份
Years
器官
Organ
处理
Treatment
处理后天数Days after treatment 成熟期
Maturity stage
10 d 20 d 30 d
2020 根Root Se0 0.755±0.034 a 0.910±0.027 a 1.370±0.041 a 1.529±0.071 a
Se5 0.765±0.021 a 0.925±0.021 a 1.365±0.049 a 1.530±0.057 a
Se20 0.765±0.027 a 0.926±0.028 a 1.354±0.035 a 1.490±0.028 a
茎Stem Se0 7.946±0.205 b 13.510±0.250 c 16.640±0.337 c 15.497±0.374 a
Se5 11.649±0.448 a 14.421±0.161 b 17.527±0.177 b 15.369±0.234 a
Se20 12.411±0.424 a 15.378±0.239 a 18.438±0.213 a 15.559±0.177 a
叶Leaf Se0 3.863±0.097 b 4.635±0.138 b 3.413±0.042 b 1.374±0.083 a
Se5 4.302±0.082 a 5.973±0.198 a 3.800±0.058 a 1.401±0.023 a
Se20 4.518±0.114 a 5.580±0.152 a 3.323±0.141 b 1.379±0.033 a
籽粒Grain Se0 0.677±0.065 c 1.295±0.057 c 4.142±0.063 c 5.205±0.144 c
Se5 1.586±0.073 a 3.391±0.024 a 4.681±0.071 b 5.691±0.098 b
Se20 1.245±0.069 b 2.274±0.049 b 5.078±0.065 a 6.116±0.076 a
2021 根Root Se0 0.520±0.183 a 0.828±0.014 a 1.161±0.066 a 1.478±0.149 a
Se5 0.676±0.078 a 0.833±0.031 a 1.234±0.113 a 1.419±0.050 a
Se20 0.620±0.061 a 0.834±0.012 a 1.137±0.159 a 1.451±0.033 a
茎Stem Se0 5.208±0.183 c 7.575±0.130 c 12.276±0.210 c 10.216±0.153 a
Se5 6.766±0.145 b 8.560±0.128 b 13.817±0.101 b 10.355±0.172 a
Se20 7.792±0.132 a 9.162±0.096 a 14.440±0.106 a 10.398±0.095 a
叶Leaf Se0 3.672±0.120 c 4.097±0.005 b 3.127±0.143 b 1.483±0.054 a
Se5 4.231±0.146 b 5.663±0.155 a 3.747±0.078 a 1.482±0.077 a
Se20 4.705±0.061 a 5.300±0.255 a 3.482±0.142 ab 1.437±0.043 a
籽粒Grain Se0 0.711±0.033 c 1.672±0.098 b 4.044±0.109 c 5.205±0.089 c
Se5 1.393±0.055 a 2.761±0.071 a 4.770±0.097 b 5.886±0.109 b
Se20 0.959±0.033 b 2.536±0.068 a 5.190±0.030 a 6.290±0.041 a

Fig. 4

Effect of spraying sodium selenite on dry matter distribution ratio (%) of sweet buckwheat roots (A), stems (B), leaves (C), and grains (D) Different lowercase letters are significantly different at the 0.05 probability level."

Fig. 5

Effect of spraying sodium selenite on dry matter transport (A), contribution rate (B), and migration rate (C) of buckwheat Different lowercase letters are significantly different at the 0.05 probability level. Treatments are the same as those given in Fig. 1."

Fig. 6

Effects of spraying sodium selenite on agronomic characters, yield, and yield components of buckwheat A: the effect of foliar spraying of sodium selenite on plant height and stem diameter; B: the effect of foliar spraying of sodium selenite on node number and main stem branch; C: the effect of foliar spraying of sodium selenite on flower cluster number and grain weight per plant; D: the effect of foliar spraying of sodium selenite on 1000-grain weight and yield. Different lowercase letters are significantly different at the 0.05 probability level. Treatments are the same as those given in Fig. 1."

Table 2

Effect of foliar spraying of sodium selenite on selenium content in different parts of common buckwheat"

年份Year 处理
Treatment
硒含量Se Concentration (mg kg-1) 转运因子Transport factor 籽粒硒的利用率Seeds Se use efficiency (%)

Root

Stem

Leaf
籽粒
Glume
2020 Se0 0.043±0.003 b 0.016±0.003 c 0.047±0.002 c 0.036±0.004 c 0.81±0.008 b
Se5 0.072±0.004 b 0.087±0.005 b 0.172±0.004 b 0.188±0.002 b 1.09±0.038 a 3.04 a
Se20 0.413±0.031 a 0.200±0.005 a 0.361±0.015 a 0.404±0.006 a 1.12±0.021 a 1.84 b
2021 Se0 0.058±0.006 c 0.021±0.006 c 0.065±0.005 c 0.053±0.002 c 0.83±0.090 b
Se5 0.116±0.019 b 0.098±0.006 b 0.205±0.007 b 0.212±0.002 b 1.03±0.027 a 3.18 a
Se20 0.404±0.014 a 0.224±0.011 a 0.393±0.014 a 0.435±0.002 a 1.11±0.022 a 1.91 b
变异来源 Variation source
年份Year (Y) NS ** ** ** NS **
处理Treatment (T) ** ** ** ** ** **
年份×处理Y×T NS NS NS ** NS **
[1] 蒋方山, 张海军, 吕连杰, 安霞, 陈军, 韩明明. 叶面喷施亚硒酸钠对黑粒小麦籽粒硒含量、产量及品质的影响. 麦类作物学报, 2018, 38: 1496-1503.
Jiang F S, Zhang H J, Lyu L J, An X, Chen J, Han M M. Effects of foliar spraying of sodium selenite on selenium content, yield and quality of black-grained wheat. J Triticeae Crops, 2018, 38: 1496-1503. (in Chinese with English abstract)
[2] 穆婷婷. 外源硒对谷子生理特性、硒含量及产量和品质的影响. 山西农业大学博士学位论文, 山西晋中, 2017. pp 10-11.
Mu T T. Effects of Exogenous Selenium on Physiological Characteristics, Selenium Content, Yield and Quality of Millet. PhD Dissertation of Shanxi Agricultural University, Jinzhong, Shanxi, China, 2017. pp 10-11. (in Chinese with English abstract)
[3] Wang Z, Huang W, Pang F. Selenium in soil-plant-microbe: a review. Bull Environ Contam Toxicol, 2022, 108: 167-181.
doi: 10.1007/s00128-021-03386-2
[4] Sana N, Bahisht R, Mudassir K, Sana F. Health benefits of buckwheat (Fagopyrum esculentum), potential remedy for diseases, rare to cancer: a mini review. Infect Disord Drug Targets, 2020, 21: 15-20.
[5] Jiang Y, El Mehdawi A F, Tripti, Lima L W, Stonehouse G, Fakra S C, Hu Y, Qi H, PilonSmits E A H. Characterization of selenium accumulation, localization and speciation in buckwheat- implications for biofortification. Front Plant Sci, 2018, 9: 583.
doi: 10.3389/fpls.2018.00583
[6] Jiang Y, Zeng Z H, Bu Y, Ren C Z, Li J Z, Han J J. Effects of selenium fertilizer on grain yield, se uptake and distribution in common buckwheat (Fagopyrum esculentum Moench). Plant Soil Environ, 2015, 61: 371-377.
doi: 10.17221/284/2015-PSE
[7] Golob A, Gadžo D, Stibilj V, Djikić M, Gavrić T, Kreft I, Germ M. Sulphur interferes with selenium accumulation in Tartary buckwheat plants. Plant Physiol Biochem, 2016, 108: 32-36.
doi: 10.1016/j.plaphy.2016.07.001
[8] 黄婷苗, 于荣, 王朝辉, 黄冬琳, 王森, 靳静静. 不同硒形态和施硒方式对小麦硒吸收利用的影响及残效. 作物学报, 2022, 48: 1516-1525.
doi: 10.3724/SP.J.1006.2022.11038
Huang T M, Yu R, Wang C H, Huang D L, Wang S, Jin J J. Effects of different selenium forms and application methods on selenium absorption and utilization in wheat and residual effects. Acta Agron Sin, 2022, 48: 1516-1525. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.11038
[9] Galić L, Vinković T, Ravnjak B, Lončarić Z. Agronomic biofortification of significant cereal crops with selenium: a review. Agronomy, 2021, 11: 1015.
doi: 10.3390/agronomy11051015
[10] Li J, Yang W, Guo A, Qi Z, Chen J, Huang T, Yang Z, Gao Z, Sun M, Wang J. Combined foliar and soil selenium fertilizer increased the grain yield, quality, total Se, and organic Se content in naked oats. J Cereal Sci, 2021, 100: 103265.
doi: 10.1016/j.jcs.2021.103265
[11] Lara T S, de Lima Lessa J H, de Souza K R D, Corguinha A P B, Martins F A D, Lopes G, Guilherme L R G. Selenium biofortification of wheat grain via foliar application and its effect on plant metabolism. J Food Compos Anal, 2019, 81: 10-18.
doi: 10.1016/j.jfca.2019.05.002
[12] 郭美俊, 郭平毅, 原向阳, 高虹, 高贞攀, 冯雷, 王斌强, 宁娜, 余凯凯, 董淑琦. 叶面喷施亚硒酸钠对谷子光合特性及产量构成的影响. 核农学报, 2014, 28: 1099-1107.
doi: 10.11869/j.issn.100-8551.2014.06.1099
Guo M J, Guo P Y, Yuan X Y, Gao H, Gao Z P, Feng L, Wang B Q, Ning N, Yu K K, Dong S Q. Effects of foliar spraying of sodium selenite on photosynthetic characteristics and yield components of millet. Acta Agric Nucl Sin, 2014, 28: 1099-1107. (in Chinese with English abstract)
[13] 董石峰, 孙敏, 林文, 任爱霞, 高志强. 拔节期喷施亚硒酸钠对小麦籽粒硒积累特性和产量的影响. 山西农业科学, 2021, 49: 440-443.
Dong S F, Sun M, Lin W, Ren A X, Gao Z Q. Effect of spraying sodium selenite at jointing stage on selenium accumulation characteristics and yield of wheat grains. Shanxi Agric Sci, 2021, 49: 440-443. (in Chinese with English abstract)
[14] Wang Q, Yu Y, Li J, Wan Y, Huang Q, Guo Y, Li H. Effects of different forms of selenium fertilizers on Se accumulation, distribution, and residual effect in winter wheat-summer maize rotation system. J Agric Food Chem, 2017, 65: 1116-1123.
doi: 10.1021/acs.jafc.6b05149
[15] Luo H W, Du B, He L X, Zheng A X, Pan S G, Tang X R. Foliar application of sodium selenate induces regulation in yield formation, grain quality characters and 2-acetyl-1-pyrroline biosynthesis in fragrant rice. BMC Plant Biol, 2019, 19: 502.
doi: 10.1186/s12870-019-2104-4 pmid: 31730480
[16] 宋丽芳, 冯美臣, 张美俊, 肖璐洁, 王超, 杨武德, 宋晓彦. 外源硒对苦荞生长发育及子粒硒含量的影响. 作物杂志, 2019, (3): 150-154.
Song L F, Feng M C, Zhang M J, Xiao L J, Wang C, Yang W D, Song X Y. Effects of exogenous selenium on growth and development of tartary buckwheat and selenium content in grain. Crops, 2019, (3): 150-154. (in Chinese with English abstract)
[17] 董石峰, 孙敏, 赵剑敏, 白雪, 卢鹏飞, 高志强, 任爱霞, 侯非凡, 尹雪斌. 花期喷施亚硒酸钠对小麦生长特性及硒积累的影响. 山西农业大学学报, 2019, 39(6): 13-18.
Dong S F, Sun M, Zhao J M, Bai X, Lu P F, Gao Z Q, Ren A X, Hou F F, Yin X B. Effect of spraying sodium selenite at flowering stage on growth characteristics and selenium accumulation of wheat. J Shanxi Agric Univ, 2019, 39(6): 13-18. (in Chinese with English abstract)
[18] 钟松臻, 张宝军, 张木, 李苹, 付弘婷. 硒对水稻光合作用及抗氧化作用的影响. 中国土壤与肥料, 2017, (4): 134-139.
Zhong S Z, Zhang B J, Zhang M, Li P, Fu H T. Effects of selenium on photosynthesis and antioxidation of rice. Chin Soil Fert, 2017, (4): 134-139. (in Chinese with English abstract)
[19] 郝玉波, 刘华琳, 慈晓科, 安宏明, 董树亭, 张吉旺, 刘鹏, 赵斌. 施硒对两种类型玉米硒元素分配及产量、品质的影响. 应用生态学报, 2012, 23: 411-418.
Hao Y B, Liu H L, Ci X K, An H M, Dong S T, Zhang J W, Liu P, Zhao B. Effects of selenium application on selenium distribution, yield and quality of two types of maize. Chin J Appl Ecol, 2012, 23: 411-418. (in Chinese with English abstract)
[20] 张慧娇. 施硒对荞麦抗氧化性和品质影响的研究. 辽宁大学硕士学位论文, 辽宁沈阳, 2019. pp 5-7.
Zhang H J. Effect of Selenium Application on Antioxidant Activity and Quality of Buckwheat. MS Thesis of Liaoning University, Shenyang, Liaoning, China, 2019. pp 5-7. (in Chinese with English abstract)
[21] 王敏. 施硒方式对小麦硒吸收、转运和形态分布的影响及机制. 西北农林科技大学硕士学位论文, 陕西杨凌, 2021.
Wang M. Effect and Mechanism of Selenium Application Methods on Selenium Absorption, Transport and Distribution in Wheat. MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2021. (in Chinese with English abstract)
[22] 史丽娟, 白文斌, 曹昌林, 高鹏. 亚硒酸钠对高粱光合作用、产量及籽粒硒含量的影响. 山西农业科学, 2020, 48: 1801-1804.
Shi L J, Bai W B, Cao C L, Gao P. Effects of sodium selenite on photosynthesis, yield and grain selenium content of sorghum. Shanxi Agric Sci, 2020, 48: 1801-1804. (in Chinese with English abstract)
[23] Wang P, Grimm B. Organization of chlorophyll biosynthesis and insertion of chlorophyll into the chlorophyll-binding proteins in chloroplasts. Photosynth Res, 2015, 126: 189-202.
doi: 10.1007/s11120-015-0154-5
[24] He L X, Zheng A X, Du B. Low-concentration sodium selenate applications improve oxidation resistance of filling-stage rice. Appl Ecol Env Res, 2019, 17: 989-998.
doi: 10.15666/aeer
[25] Luo H W, He L X, Du B, Wang Z M, Zheng A X, Lai R F, Tang X R. Foliar application of selenium (Se) at heading stage induces regulation of photosynthesis, yield formation, and quality characteristics in fragrant rice. Photosynthetica, 2019, 57: 1007-1014.
doi: 10.32615/ps.2019.114
[26] 党科. 糜子/绿豆间作下氮对绿豆生长发育和根际土壤特性的影响. 西北农林科技大学硕士学位论文, 陕西杨凌, 2021.
Dang K. Effect of Nitrogen on Growth and Development of Mung Bean and Rhizosphere Soil Characteristics under Millet/Mung Bean Intercropping. MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2021. (in Chinese with English abstract)
[27] 党科, 宫香伟, 吕思明, 赵冠, 田礼欣, 靳飞, 杨璞, 冯佰利, 高小丽. 糜子/绿豆间作模式下施氮量对绿豆叶片光合特性及产量的影响. 作物学报, 2021, 47: 1175-1187.
doi: 10.3724/SP.J.1006.2021.04148
Dang K, Gong X W, Lyu S M, Zhao G, Tian L X, Jin F, Yang P, Feng B L, Gao X L. Effect of nitrogen application rate on photosynthetic characteristics and yield of mung bean leaves in millet/mung bean intercropping mode. Acta Agron Sin, 2021, 47: 1175-1187. (in Chinese with English abstract)
[28] 党科, 宫香伟, 陈光华, 赵冠, 刘龙, 王洪露, 杨璞, 冯佰利. 糜子绿豆带状种植下糜子的氮素积累、代谢及产量变化. 作物学报, 2019, 45: 1880-1890.
doi: 10.3724/SP.J.1006.2019.94042
Dang K, Gong X W, Chen G H, Zhao G, Liu L, Wang H L, Yang P, Feng B L. Changes of nitrogen accumulation, metabolism and yield of millet planted with mung bean strips. Acta Agron Sin, 2019, 45: 1880-1890. (in Chinese with English abstract)
[29] 王兆双, 涂书新, 熊双莲, 郑威. 土壤硒水平和硒肥对水稻硒含量、抗氧化反应及干物质积累的影响. 核农学报, 2015, 29: 2375-2384.
doi: 10.11869/j.issn.100-8551.2015.12.2375
Wang Z S, Tu S X, Xiong S L, Zheng W. Effects of soil selenium level and selenium fertilizer on selenium content, antioxidant reaction and dry matter accumulation in rice. Acta Agric Nucl Sin, 2015, 29: 2375-2384. (in Chinese with English abstract)
[30] 马小艳, 尹丹, 周沫, 晏小川, 郭成, 黄冬琳, 王朝辉. 硒酸钠施用对小麦的富硒效应及其残效. 麦类作物学报, 2022, 42: 605-613.
Ma X Y, Yin D, Zhou M, Yan X C, Guo C, Huang D L, Wang Z H. Selenium-enriched effect and residual effect of sodium selenate on wheat. J Triticeae Crops, 2022, 42: 605-613. (in Chinese with English abstract)
[31] 张妮, 李琦, 张栋, 侯振安, 冶军, 苏志伟, 梁成龙. 外源硒对滴灌小麦籽粒硒含量及产量的影响. 麦类作物学报, 2015, 35: 995-1001.
Zhang N, Li Q, Zhang D, Hou Z A, Ye J, Su Z W, Liang C L. Effect of exogenous selenium on selenium content and yield of drip irrigation wheat grains. J Triticeae Crops, 2015, 35: 995-1001. (in Chinese with English abstract)
[32] 段门俊, 田玉聪, 吴芸紫, 金涛, 陈阜, 刘章勇. 叶面喷施亚硒酸钠对再生稻产量及品质的影响. 中国水稻科学, 2018, 32: 96-102.
doi: 10.16819/j.1001-7216.2018.7077 1
Duan M J, Tian Y C, Wu Y Z, Jin T, Chen F, Liu Z Y. Effect of foliar spraying of sodium selenite on the yield and quality of ratooning rice. Chin Rice Sci, 2018, 32: 96-102. (in Chinese with English abstract)
[33] 唐玉霞, 王慧敏, 吕英华, 刘巧玲, 杨军方. 冬小麦硒素吸收积累特性及叶面喷硒效应的研究. 华北农学报, 2010, 25(增刊1): 198-201.
Tang Y X, Wang H M, Lyu Y H, Liu Q L, Yang J F. Study on selenium absorption and accumulation characteristics of winter wheat and the effect of foliar spraying selenium. Acta Agric Boreali-Sin, 2010, 25(S1): 198-201. (in Chinese with English abstract)
[34] 刘慧, 杨月娥, 王朝辉, 李富翠, 李可懿, 杨宁, 王森, 王慧, 何刚, 戴健. 中国不同麦区小麦籽粒硒的含量及调控. 中国农业科学, 2016, 49: 1715-1728.
doi: 10.3864/j.issn.0578-1752.2016.09.008
Liu H, Yang Y E, Wang C H, Li F C, Li K Y, Yang N, Wang S, Wang H, He G, Dai J. Selenium content and regulation of wheat grains in different wheat regions in China. Sci Agric Sin, 2016, 49: 1715-1728. (in Chinese with English abstract)
[35] Wu Z L, Bañuelos G S, Lin Z Q, Liu Y, Yuan L, Yin X, Lin M. Biofortification and phytoremediation of selenium in China. Front Plant Sci, 2015, 6: 136.
doi: 10.3389/fpls.2015.00136 pmid: 25852703
[36] 张联合, 赵巍, 郁飞燕, 李友军, 苗艳芳. 水稻离体叶片吸收亚硒酸盐的生理特性. 土壤学报, 2012, 49: 189-193.
Zhang L H, Zhao W, Yu F Y, Li Y J, Miao Y F. Physiological characteristics of selenite absorption by rice leaves in vitro. J Soil Sci, 2012, 49: 189-193. (in Chinese with English abstract)
[37] 曹昌林, 吕慧卿, 郝志萍, 高翔. 外源硒对‘晋苦荞5号’光合特性、籽粒硒积累和产量及品质的影响. 中国土壤与肥料, 2021, (3): 207-213.
Cao C L, Lyu H Q, Hao Z P, Gao X. Effects of exogenous selenium on photosynthetic characteristics, grain selenium accumulation, yield and quality of “Jin Tartary Buckwheat 5”. Chin Soil Fert, 2021, (3): 207-213. (in Chinese with English abstract)
[38] 刘庆, 田侠, 史衍玺. 施硒对小麦籽粒硒富集、转化及蛋白质与矿质元素含量的影响. 作物学报, 2016, 42: 778-783.
doi: 10.3724/SP.J.1006.2016.00778
Liu Q, Tian X, Shi Y X. Effects of selenium application on selenium enrichment and transformation, protein and mineral element content in wheat grains. Acta Agron Sin, 2016, 42: 778-783. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2016.00778
[39] 侯松, 田侠, 刘庆. 叶面喷施硒对紫甘薯硒吸收、分配及品质的影响. 作物学报, 2018, 44: 423-430.
doi: 10.3724/SP.J.1006.2018.00423
Hou S, Tian X, Liu Q. Effects of foliar application of selenium on selenium absorption, distribution and quality of purple sweet potato. Acta Agron Sin, 2018, 44: 423-430. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.00423
[40] 付冬冬. 不同外源硒对冬小麦硒吸收、分配和转运的影响. 西北农林科技大学硕士学位论文, 陕西杨凌, 2011.
Fu D D. Effects of Different Exogenous Selenium on Selenium Absorption, Distribution and Transport in Winter Wheat. MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2011. (in Chinese with English abstract)
[1] WEI Jin-Gui, GUO Yao, CHAI Qiang, YIN Wen, FAN Zhi-Long, HU Fa-Long. Yield and yield components of maize response to high plant density under reduced water and nitrogen supply [J]. Acta Agronomica Sinica, 2023, 49(7): 1919-1929.
[2] ZHANG Zhen, SHI Yu, ZHANG Yong-Li, YU Zhen-Wen, WANG Xi-Zhi. Effects of different soil water content on water consumption by wheat and analysis of senescence characteristics of root and flag leaf [J]. Acta Agronomica Sinica, 2023, 49(7): 1895-1905.
[3] ZHANG Lu-Lu, ZHANG Xue-Mei, MU Wen-Yan, HUANG Ning, GUO Zi-Kang, LUO Yi-Nuo, WEI Lei, SUN Li-Qian, WANG Xing-Shu, SHI Me, WANG Zhao-Hui. Grain Mn concentration of wheat in main wheat production regions of China: Effects of cultivars and soil factors [J]. Acta Agronomica Sinica, 2023, 49(7): 1906-1918.
[4] DONG Zhi-Qiang, LYU Li-Hua, YAO Yan-Rong, ZHANG Jing-Ting, ZHANG Li-Hua, YAO Hai-Po, SHEN Hai-Ping, JIA Xiu-Ling. Yield and quality of strong gluten wheat Shiluan 02-1 under water and nitrogen interaction [J]. Acta Agronomica Sinica, 2023, 49(7): 1942-1953.
[5] DENG Ai-Xing, LI Ge-Xing, LYU Yu-Ping, LIU You-Hong, MENG Ying, ZHANG Jun, ZHANG Wei-Jian. Effect of shading duration after heading on grain yield and quality of Japonica rice in Northwest China [J]. Acta Agronomica Sinica, 2023, 49(7): 1930-1941.
[6] SONG Yi, LI Jing, GU He-He, LU Zhi-Feng, LIAO Shi-Peng, LI Xiao-Kun, CONG Ri-Huan, REN Tao, LU Jian-Wei. Effects of application of nitrogen on seed yield and quality of winter oilseed rape (Brassica napus L.) [J]. Acta Agronomica Sinica, 2023, 49(7): 2002-2011.
[7] LI Rong, MIAN You-Ming, HOU Xian-Qing, LI Pei-Fu, WANG Xi-Na. Effects of nitrogen application on decomposition and nutrient release of returning straw, soil fertility, and maize yield [J]. Acta Agronomica Sinica, 2023, 49(7): 2012-2022.
[8] ZHU Xu-Dong, YANG Lan-Feng, CHEN Yuan-Yuan, HOU Ze-Hao, LUO Yi-Rou, XIONG Ze-Hao, FANG Zheng-Wu. Biological functional analysis of common buckwheat (Fagopyrum esculentum) FeSGT1 gene in enhancing drought stress resistance [J]. Acta Agronomica Sinica, 2023, 49(6): 1573-1583.
[9] YAN Jin-Yao, SONG Yi, LU Zhi-Feng, REN Tao, LU Jian-Wei. Effect of phosphorus fertilizer rate on rapeseed yield and quality (Brassica napus L.) [J]. Acta Agronomica Sinica, 2023, 49(6): 1668-1677.
[10] YU Xin-Ying, WANG Chun-Yun, LI Da-Shuang, WANG Zong-Kai, KUAI Jie, WANG Bo, WANG Jing, XU Zheng-Hua, ZHOU Guang-Sheng. Formation mechanism of yield stability in high-yielding rapeseed varieties [J]. Acta Agronomica Sinica, 2023, 49(6): 1601-1615.
[11] XU Ran, CHEN Song, XU Chun-Mei, LIU Yuan-Hui, ZHANG Xiu-Fu, WANG Dan-Ying, CHU Guang. Effects of nitrogen fertilizer rates on grain yield and nitrogen use efficiency of japonica-indica hybrid rice cultivar Yongyou 1540 and its physiological bases [J]. Acta Agronomica Sinica, 2023, 49(6): 1630-1642.
[12] ZHANG Zhen-Bo, JIA Chun-Lan, REN Bai-Zhao, LIU Peng, ZHAO Bin, ZHANG Ji-Wang. Effects of combined application of nitrogen and phosphorus on yield and leaf senescence physiological characteristics in summer maize [J]. Acta Agronomica Sinica, 2023, 49(6): 1616-1629.
[13] ZHANG Jun-Jie, CHEN Jin-Ping, TANG Yu-Lou, ZHANG Rui, CAO Hong-Zhang, WANG Li-Juan, MA Meng-Jin, WANG Hao, WANG Yong-Chao, GUO Jia-Meng, KRISHNA SV Jagadish, YANG Qing-Hua, SHAO Rui-Xin. Effects of drought stress before and after anthesis on photosynthetic characteristics and yield of summer maize after re-watering [J]. Acta Agronomica Sinica, 2023, 49(5): 1397-1409.
[14] YUE Hai-Wang, HAN Xuan, WEI Jian-Wei, ZHENG Shu-Hong, XIE Jun-Liang, CHEN Shu-Ping, PENG Hai-Cheng, BU Jun-Zhou. Comprehensive evaluation of maize hybrids tested in Huang-Huai-Hai summer maize regional trial based on GYT biplot analysis [J]. Acta Agronomica Sinica, 2023, 49(5): 1231-1248.
[15] LIU Xin-Meng, CHENG Yi, LIU Yu-Wen, PANG Shang-Shui, YE Xiu-Qin, BU Yan-Xia, ZHANG Ji-Wang, ZHAO Bin, REN Bai-Zhao, REN Hao, LIU Peng. Difference analysis of yield and resource use efficiency of modern summer maize varieties in Huang-Huai-Hai region [J]. Acta Agronomica Sinica, 2023, 49(5): 1363-1371.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .