Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (4): 1053-1064.doi: 10.3724/SP.J.1006.2024.33038

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of organic fertilizer substituting chemical fertilizer nitrogen on yield, quality, and nitrogen efficiency of waxy maize

LOU Fei1(), ZUO Yi-Ping1, LI Meng1, DAI Xin-Meng1, WANG Jian1, HAN Jin-Ling1, WU Shu3, LI Xiang-Ling1,*(), DUAN Hui-Jun2,*()   

  1. 1College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology / Hebei Key Laboratory of Crop Stress Biology, Qinhuangdao 066004, Hebei, China
    2College of Agronomy, Hebei Agricultural University / State Key Laboratory of North China Crop Improvement and Regulation, Baoding 071001, Hebei, China
    3Hebei University of Environmental Engineering / Hebei Key Laboratory of Agroecological Safety, Qinhuangdao 066102, Hebei, China
  • Received:2023-06-09 Accepted:2023-09-13 Online:2024-04-12 Published:2023-09-27
  • Contact: * E-mail: ncqyfz2008@126.com; E-mail: hjduan@hebau.edu.cn
  • Supported by:
    Special Specialty Corn New Bariety Breeding Fund Project of Hebei Province(21326319D-16);Construction Project of Maize Industry Innovation Team of Modern Agricultural Technology System in Hebei Province(HBCT2023010410)

Abstract:

The objective of this study is to investigate the effect of organic fertilizer substitution of some chemical fertilizers on ear yield, quality, and nitrogen utilization of fresh waxy maize, and to explore the optimum organic fertilizer substitution ratio for chemical fertilizer in waxy maize production, which can provide the theoretical basis for the high-quality cultivation of fresh waxy maize in Hebei Plain. The field trials were conducted in 2020 and 2021 using the waxy maize variety Sidanuo 41 as the experimental material. A randomized zonal experimental design was used to set up 6 treatments: no nitrogen application (T1), quantitative fertilizer nitrogen (T2), organic fertilizer substituting 20% chemical fertilizer nitrogen (T3), organic fertilizer substituting 40% chemical fertilizer nitrogen (T4), organic fertilizer substituting 60% chemical fertilizer nitrogen (T5), and organic fertilizer substituting 100% chemical fertilizer nitrogen (T6). The results showed that substituting of T3, T4, T5 treatments with commercial organic fertilizer increased fresh ears yield of waxy maize, increased by 3.08%, 13.61%, and 3.20%, respectively. Compared with T2 treatment, nitrogen use efficiency treatment with T3-T6 were decreased, the partial productivity and agronomic efficiency of nitrogen fertilizer of T3-T5 treatments were significantly increased. The appearance and tasting quality scores of waxy maize under the substituting of commercial organic fertilizer were higher than T2 treatment, and the total score of T4 treatment was the highest, mainly because the substituting some chemical fertilizer by organic fertilizer increased the total starch and pullulan content of grain, reduced the content of grain protein and soluble sugar, and improved grain texture characteristics, increased grain hardness, elasticity and chewiness, and decreased cohesion. In conclusion, under the condition of a total nitrogen application rate of 180 kg hm-2, the substituting 40% chemical fertilizer nitrogen (T4) with organic fertilizer can improve the yield and quality of fresh ears of waxy maize.

Key words: waxy maize, organic fertilizer, yield, nitrogen efficiency, quality

Fig. 1

Effects of organic fertilizer substituting some chemical fertilizer nitrogen on dry matter accumulation of waxy maize T1: no nitrogen fertilizer application; T2: constant fertilizer nitrogen; T3: organic fertilizer substituting 20% chemical fertilizer nitrogen; T4: organic fertilizer substituting 40% chemical fertilizer nitrogen; T5: organic fertilizer substituting 60% chemical fertilizer nitrogen; T6: organic fertilizer substituting 100% chemical fertilizer nitrogen. V6: jointing stage; V12: big bell mouth stage; R1: silking stage; R3: milk ripening harvest stage."

Fig. 2

Effects of organic fertilizer substituting some chemical fertilizer nitrogen on N accumulation in fresh waxy maize T1: no nitrogen fertilizer application; T2: constant fertilizer nitrogen; T3: organic fertilizer substituting 20% chemical fertilizer nitrogen; T4: organic fertilizer substituting 40% chemical fertilizer nitrogen; T5: organic fertilizer substituting 60% chemical fertilizer nitrogen; T6: organic fertilizer substituting 100% chemical fertilizer nitrogen. V6: jointing stage; V12: big bell mouth stage; R1: silking stage; R3: milk ripening harvest stage."

Fig. 3

Effects of commercial organic fertilizer substituting some chemical fertilizer nitrogen on yield of fresh ear in fresh waxy maize T1: no nitrogen fertilizer application; T2: constant fertilizer nitrogen; T3: organic fertilizer substituting 20% chemical fertilizer nitrogen; T4: organic fertilizer substituting 40% chemical fertilizer nitrogen; T5: organic fertilizer substituting 60% chemical fertilizer nitrogen; T6: organic fertilizer substituting 100% chemical fertilizer nitrogen. Different lowercase letters mean significant differences among the treatments in the same year at the 0.05 probability level."

Table 1

Effects of organic fertilizer substituting some chemical fertilizer nitrogen on nitrogen efficiency in fresh waxy maize"

年份
Year
处理
Treatment
氮素利用率
NUE (kg kg-1)
氮肥偏生产力
PFPN (kg kg-1)
氮素农学效率
AEN (kg kg-1)
2021 T1
T2 65.21 a 63.99 bc 25.28 bc
T3 55.24 b 65.97 b 27.26 b
T4 49.37 b 72.70 a 33.99 a
T5 50.24 b 66.04 b 27.33 b
T6 21.35 c 58.64 c 20.50 c
2022 T1
T2 66.03 a 63.06 c 25.36 b
T3 62.56 b 71.84 ab 28.20 a
T4 48.28 b 73.17 a 30.33 a
T5 54.17 b 71.04 ab 30.86 a
T6 14.09 c 56.67 d 15.43 b

Table 2

Effects of organic fertilizer substituting some chemical fertilizer nitrogen on taste quality in fresh waxy maize"

年份
Year
处理
Treatment
外观
Appearance
气味
Smell
色泽
Color and luster
糯性
Waxy
风味
Special flavor
柔嫩性
Tenderness
果皮厚薄
Thickness
of peel
总分
Total score
2021 T1 24.9 b 5.0 a 5.9 b 14.8 b 7.7 b 8.4 a 14.8 b 80.3 b
T2 26.8 b 5.1 a 5.9 b 14.7 b 7.7 b 8.0 a 15.3 b 82.4 b
T3 27.2 a 5.5 a 6.4 a 15.1 a 8.1 a 8.8 a 15.9 ab 85.9 ab
T4 26.8 b 5.7 a 6.5 a 15.8 a 8.7 a 8.6 a 16.3 a 87.1 a
T5 28.3 a 5.5 a 6.5 a 15.6 a 8.5 a 8.2 a 15.5 b 86.9 a
T6 26.5 b 5.1 a 5.8 a 15.3 a 8.1 a 8.3 a 15.5 b 83.4 b
2022 T1 26.0 b 6.0 a 6.3 a 14.3 b 8.0 b 8.7 a 16.3 ab 85.7 bc
T2 26.0 b 5.7 a 6.3 a 15.3 b 8.7 ab 8.3 b 16.0 ab 86.3 b
T3 27.0 a 6.0 ab 5.7 b 16.0 a 9.0 a 8.0 b 16.7 ab 88.3 b
T4 27.0 a 6.3 a 6.0 a 16.3 a 9.0 a 9.0 a 17.0 a 90.7 a
T5 27.3 a 5.7 a 5.7 b 16.0 a 8.3 b 8.0 b 15.0 b 86.0 b
T6 26.0 b 6.3 a 6.3 a 15.7 ab 8.3 b 8.3 b 14.3 b 85.3 bc

Table 3

Effects of organic fertilizer substituting some chemical fertilizer nitrogen on grain nutritional quality in fresh waxy maize (%)"

年份
Year
处理
Treatment
蛋白质含量
Protein
可溶性糖含量Soluble sugar 蔗糖含量
Sucrose
可溶性淀粉含量
Soluble starch
直链淀粉含量
Amylose
支链淀粉含量
Amylopectin
2021 T1 9.88 d 10.10 b 3.39 c 50.09 b 0.83 a 49.26 b
T2 12.75 b 10.72 b 3.93 c 50.28 b 1.22 a 49.05 b
T3 14.00 a 11.34 a 4.14 b 53.71 ab 1.47 a 52.24 ab
T4 10.94 c 11.64 a 4.64 a 57.93 a 0.83 a 57.09 a
T5 10.31 c 11.31 a 4.25 ab 54.66 ab 1.08 a 53.58 a
T6 10.38 c 11.06 ab 4.03 b 51.62 b 1.05 a 50.57 b
2022 T1 9.81 c 11.04 b 4.58 b 44.64 bc 0.83 43.81 c
T2 13.25 b 11.80 b 5.21 ab 47.99 b 0.50 47.49b
T3 15.25 a 12.28 a 5.61 a 49.81 b 0.80 49.00b
T4 13.13 b 12.62 a 5.76 a 55.31 a 0.61 54.70 a
T5 13.31 b 12.21 a 5.52 ab 52.63 ab 0.78 51.85 ab
T6 9.88 c 12.11 ab 5.38 ab 52.21 ab 1.03 51.18 ab

Table 4

Effects of organic fertilizer substituting some chemical fertilizer nitrogen on grain texture characteristics of fresh-eating waxy maize"

年份
Year
处理
Treatment
硬度
Hardness
内聚性
Cohesion
弹性
Flexibility
胶黏性
Stickiness
咀嚼性
Chewability
2021 T1 3.74 b 0.36 ab 4.01 b 1.13 a 4.20 ab
T2 4.33 ab 0.43 a 3.96 b 1.16 a 3.72 b
T3 4.65 ab 0.32 ab 4.47 ab 1.29 a 5.20 a
T4 5.09 a 0.37 ab 4.83 a 1.27 a 5.63 a
T5 3.97 b 0.29 b 4.62 a 1.21 a 4.95 ab
T6 4.18 ab 0.43 a 4.22 ab 1.31 a 4.33 ab
2022 T1 4.23 b 0.27 b 4.95 b 1.33 ab 5.17 b
T2 5.36 a 0.38 ab 4.53 b 1.20 ab 5.65 b
T3 5.21 a 0.41 a 4.91 b 1.42 ab 5.73 b
T4 5.09 ab 0.34 b 5.77 a 1.72 a 6.72 a
T5 4.95 ab 0.26 b 5.37 ab 1.68 a 5.89 b
T6 4.45 b 0.27 b 5.07 b 1.29 ab 5.49 b

Fig. 4

Correlation among yield, nutrient efficiency, and quality in waxy maize GY: fresh ear yield; DMA: plant dry matter accumulation during harvest; NC: plant nitrogen accumulation during harvest; NUE: nitrogen efficiency; PFPN: nitrogen partial productivity; AEN: nitrogen fertilizer agronomic efficiency; CFS: cooking flavor score; GPTC: grain protein content; GSSC: grain soluble sugar content; GSC: grain sucrose content; TGSC: the total grain starch; GAC: grain amylose content; GPLC: grain pullulan content; GH: grain hardness; GCH: grain cohesion; GE: grain elasticity; GV: grain viscosity; GCW: grain chewability."

[20] 周芸, 李永梅, 范茂攀, 王自林, 徐智, 张丹, 赵吉霞. 有机肥等氮替代化肥对红壤团聚体及玉米产量和品质的影响. 作物杂志, 2019, (4): 125-132.
Zhou Y, Li Y M, Fan M P, Wang Z L, Xu Z, Zhang D, Zhao J X. Effects of nitrogen in organic manure replacing chemical nitrogenous fertilizer on aggregates of red soil, maize yield and quality. Crops, 2019, (4): 125-132 (in Chinese with English abstract).
[21] 方成, 代子雯, 李伟明, 王东升, 焦加国, 陈小云, 徐莉. 化肥减施配施不同有机肥对甜糯玉米产量和品质的影响. 生态学杂志, 2021, 40: 1347-1355.
Fang C, Dai Z W, Li W M, Wang D S, Jiao J G, Chen X Y, Xu L. Effects of reduced chemical fertilizer with organic fertilizer application on the yield and grain quality of sweet-waxy maize. Chin J Ecol, 2021, 40: 1347-1355 (in Chinese with English abstract).
[22] Zhai L C, Wang Z B, Zhai Y C, Zhang L H, Zheng M J, Yao H P, Lv L H, Shen H P, Zhang J T, Yao Y R, Jia X L. Partial substitution of chemical fertilizer by organic fertilizer benefits grain yield, water use efficiency, and economic return of summer maize. Soil Tillage Res, 2022, 217: 105287.
doi: 10.1016/j.still.2021.105287
[23] 党翼, 张建军, 赵刚, 郭天文, 樊廷录, 王勇, 王磊. 不同用量的有机肥对陇东旱地春玉米生长特性及产量的影响. 中国土壤与肥料, 2015, (3): 62-67.
Dang Y, Zhang J J, Zhao G, Guo T W, Fan T L, Wang Y, Wang L. Effect of different amount of manure on growth characteristics and yield of spring maize in calcic kastanozems soil of Eastern Gansu’s Loess Plateau. Soil Fert Sci China, 2015, (3): 62-67. (in Chinese with English abstract)
[24] 刘斌祥, 王兴龙, 周芳, 杜伦静, 金容, 冯冬菊, 袁继超, 孔凡磊. 减氮配施不同种类有机肥对玉米物质分配、转运与产量的影响. 生态学杂志, 2020, 39: 130-138.
Liu B X, Wang X L, Zhou F, Du L J, Jin R, Feng D J, Yuan J C, Kong F L. Effects of reducing nitrogen combined with application of different types of organic fertilizers on dry matter allocation, transport, and yield of maize. Chin J Ecol, 2020, 39: 130-138. (in Chinese with English abstract)
[25] 黄志浩, 曹国军, 耿玉辉, 潘京洲, 邢伟明. 有机肥部分替代氮肥土壤硝态氮动态变化特征及玉米产量效应研究. 玉米科学, 2019, 27(1): 151-158.
Huang Z H, Cao G J, Geng Y H, Pan J Z, Xing W M. Effects of organic manure partial substitution for chemical N fertilizer on the dynamic change of soil nitrate N and maize yield. J Maize Sci, 2019, 27(1): 151-158. (in Chinese with English abstract)
[26] 虞轶俊, 马军伟, 陆若辉, 邬奇峰, 朱伟锋, 孔海民, 王峰. 有机肥对土壤特性及农产品产量和品质影响研究进展. 中国农学通报, 2020, 36(35): 64-71.
doi: 10.11924/j.issn.1000-6850.casb2020-0110
Yu Y, Ma J W, Lu R H, Wu Q F, Zhu W F, Kong H M, Wang F. Effect of organic fertilizer on soil characteristics, yield and quality of agricultural products: research progress. Chin Agric Sci Bull, 2020, 36(35): 64-71. (in Chinese with English abstract)
doi: 10.11924/j.issn.1000-6850.casb2020-0110
[27] 晁赢, 付钢锋, 阎祥慧, 杭中桥, 杨全刚, 王会, 潘红, 娄燕宏, 诸葛玉平. 有机肥对作物品质、土壤肥力及环境影响的研究进展. 中国农学通报, 2022, 38(29): 103-107.
doi: 10.11924/j.issn.1000-6850.casb2021-0631
Chao Y, Fu G F, Yan X H, Hang Z Q, Yang Q G, Wang H, Pan H, Lou Y H, Zhuge Y P. Effects of organic fertilizer on crop quality, soil fertility and environment: research progress. Chin Agric Sci Bull, 2022, 38(29): 103-107. (in Chinese with English abstract)
doi: 10.11924/j.issn.1000-6850.casb2021-0631
[28] 刘楚桐, 陈松岭, 金鑫鑫, 徐志强, 叶旭红, 邹洪涛, 张玉龙. 控释氮肥减量配施对土壤氮素调控及夏玉米产量的影响. 中国土壤与肥料, 2021, (2): 108-115.
Liu C T, Chen S L, Jin X X, Xu Z Q, Ye X H, Zou H T, Zhang Y L. Effect of reducing and postponing controlled-release nitrogen application on soil nitrogen regulation and summer maize yield. Soil Fer Sci Chin, 2021, (2): 108-115. (in Chinese with English abstract)
[29] 郭校伟, 潘军晓, 张济世, 徐张义, 马东立, 崔振岭. 好氧发酵猪粪部分替代化肥提高夏玉米氮素利用率和土壤肥力. 植物营养与肥料学报, 2020, 26: 1025-1034.
Guo X W, Pan J X, Zhang J S, Xu Z Y, Ma D L, Cui Z L. Partial substitution of chemical fertilizer with aerobic fermented pig manure increases nitrogen use efficiency of summer maize and soil fertility. Plant Nutr Fert Sci, 2020, 26: 1025-1034. (in Chinese with English abstract)
[30] 高飞, 李威, 逄妍, 陶晓亮, 姜佰文. 不同氮肥处理对春玉米氮吸收分配及产量的影响. 作物杂志, 2015, (4): 97-101.
[1] 赵久然, 卢柏山, 史亚兴, 徐丽. 我国糯玉米育种及产业发展动态. 玉米科学, 2016, 24(4): 67-71.
Zhao J R, Lu B S, Shi Y L, Xu L. Development trends of waxy maize breeding and industry in China. J Maize Sci, 2016, 24(4): 67-71. (in Chinese with English abstract)
[2] 董宗宗, 乔勇进, 刘晨霞, 张怡, 王晓, 陈冰洁. 不同采收期对鲜穗糯玉米品质影响的研究. 上海农业学报, 2020, 36(4): 19-24.
Dong Z Z, Qiao Y J, Liu C X, Zhang Y, Wang X, Chen B J. Study on the influence of different harvesting times on the quality of fresh waxy maize. Acta Agric Shanghai, 2020, 36(4): 19-24. (in Chinese with English abstract)
[3] 史亚兴, 徐丽, 赵久然, 卢柏山, 樊艳丽. 中国糯玉米产业优势及在“一带一路”发展中的机遇. 作物杂志, 2019, (2): 15-19.
Shi Y X, Xu L, Zhao J R, Lu B S, Fan Y L. Waxy maize industry advantages in China and opportunities in the development of the belt and road. Crops, 2019, (2): 15-19. (in Chinese with English abstract)
[4] 李余良, 索海翠. 鲜食玉米胚乳突变基因及其分子育种研究进展. 中国农学通报, 2019, 35(19): 21-27.
doi: 10.11924/j.issn.1000-6850.casb18030006
Li Y L, Suo H C. Endosperm mutation genes and molecular breeding of fresh maize: research progress. Chin Agric Sci Bull, 2019, 35(19): 21-27. (in Chinese with English abstract)
[5] 徐丽, 赵久然, 卢柏山, 史亚兴, 樊艳丽. 我国鲜食玉米种业现状及发展趋势. 中国种业, 2020, (10): 14-18.
Xu L, Zhao J R, Lu B S, Shi Y X, Fan Y L. Current situation and development trend of fresh maize seed industry in China. China Seed Ind, 2020, (10): 14-18. (in Chinese with English abstract)
[30] Gao F, Li W, Pang Y, Tao X L, Jiang B W. Effects of different nitrogen fertilizers on nitrogen absorption, distribution and yield of spring maize. Crops, 2015, (4): 97-101. (in Chinese with English abstract)
[31] 宋桂云, 侯迷红, 孙德智, 苏雅乐, 苏慧, 马金慧, 马玉露. 氮肥施用对科尔沁地区粮饲兼用玉米氮素积累及氮效率的影响. 中国土壤与肥料, 2017, (6): 93-98.
Song G Y, Hou M H, Sun D Z, Su Y L, Su H, Ma J H, Ma Y L. Effects of nitrogen fertilizer application on N accumulation and N efficiency of dual-purpose maize in Korqin. Soil Fert Sci China, 2017, (6): 93-98. (in Chinese with English abstract)
[32] Xia Y H, Chen X B, Zheng S M, Gunina A, Ning Z, Hu Y J, Tang H M, Rui Y C, Zhang Z H, He H B, Huang D Y, Su Y R. Manure application accumulates more nitrogen in paddy soils than rice straw but less from fungal necro mass. Agric Ecosys Environ, 2021, 319: 107575.
doi: 10.1016/j.agee.2021.107575
[33] 李孝良, 胡立涛, 王泓, 张云晴, 吴长昊, 汪建飞. 化肥减量配施有机肥对皖北夏玉米养分吸收及氮素利用效率的影响. 南京农业大学学报, 2019, 42: 118-123.
Li X L, Hu L T, Wang H, Zhang Y Q, Wu C H, Wang J F. Effects of combination of chemical fertilizer reduction with organic manure on nutrient uptake and nitrogen utilization efficiency of summer maize in Northern Anhui province. J Nanjing Agric Univ, 2019, 42: 118-123. (in Chinese with English abstract)
[34] 高洪军, 朱平, 彭畅, 张秀芝, 李强, 张卫建. 等氮条件下长期有机无机配施对春玉米的氮素吸收利用和土壤无机氮的影响. 植物营养与肥料学报, 2015, 21: 318-325.
Gao H J, Zhu P, Peng C, Zhang X Z, Li Q, Zhang W J. Effects of partially replacement of inorganic N with organic materials on nitrogen efficiency of spring maize and soil inorganic nitrogen content under the same N input. Plant Nutr Fert Sci, 2015, 21: 318-325. (in Chinese with English abstract)
[35] 张秀芝, 高洪军, 彭畅, 李强, 朱平. 等氮量投入下有机无机肥配施对玉米产量及氮素利用的影响. 玉米科学, 2012, 20(6): 123-127.
Zhang X Z, Gao H J, Peng C, Li Q, Zhu P. Effects of combined application of organic manure and chemical fertilizer on maize yield and nitrogen utilization under equal nitrogen rates. J Maize Sci, 2012, 20(6): 123-127. (in Chinese with English abstract)
[6] Xiao G, Zhao Z, Liang L, Meng F, Wu W, Guo Y, Improving nitrogen and water use efficiency in a wheat-maize rotation system in the North China plain using optimized farming practices. Agric Water Manag, 2019, 212: 172-180.
doi: 10.1016/j.agwat.2018.09.011
[7] Cui Z L, Zhang H Y, Chen X P, Zhang C C, Ma W Q, Huang C D, Zhang W F, Mi G H, Miao Y X, Li X L, Gao Q, Yang J C, Wang Z H, Ye Y L, Guo S W, Lu J W, Huang J L, Lv S H, Sun Y X, Liu Y Y, Peng X L, Ren J, Li S Q, Deng X P, Shi X J, Zhang Q, Yang Z P, Tang L, Wei C Z, Jia L L, Zhang J W, He M R, Tong Y N, Tang Q Y, Zhong X H, Liu Z H, Cao N, Kou C L, Ying H, Yin Y L, Jiao X Q, Zhang Q S, Fan M S, Jiang R F, Zhang F S, Dou Z X. Pursuing sustainable productivity with millions of smallholder farmers. Nature, 2018, 555: 363-366.
doi: 10.1038/nature25785
[8] Liu B, Wang X Z, Ma L, Chadwick D, Chen X P. Combined applications of organic and synthetic nitrogen fertilizers for improving crop yield and reducing reactive nitrogen losses from China’s vegetable systems: a meta-analysis. Environ Pollut, 2021, 269: 116143.
doi: 10.1016/j.envpol.2020.116143
[9] Zhang J, Zhuang M H, Shan N, Zhao Q, Li H, Wang L G. Substituting organic manure for compound fertilizer increases yield and decreases NH3 and N2O emissions in an intensive vegetable production systems. Sci Total Environ, 2019, 670: 1187-1189.
[10] Huang R, Wang Y M, Liu J, Gao J J, Zhang Y R, Ni J P, Xie D T, Wang Z F, Gao M. Partial substitution of chemical fertilizer by organic materials changed the abundance, diversity, and activity of NIRS-type denitrifying bacterial communities in a vegetable soil. Appl Soil Ecol, 2020, 152: 103589.
doi: 10.1016/j.apsoil.2020.103589
[11] Cai A D, Xu M G, Wang B R, Zhang W J, Liang G P, Hou E Q, Luo Y Q. Manure acts as a better fertilizer for increasing crop yields than synthetic fertilizer does by improving soil fertility. Soil Tillage Res, 2019, 189: 168-175.
doi: 10.1016/j.still.2018.12.022
[12] 卢合全, 唐薇, 罗振, 孔祥强, 李振怀, 徐士振, 辛承松. 商品有机肥替代部分化肥对连作棉田土壤养分、棉花生长发育及产量的影响. 作物学报, 2021, 47: 2511-2521.
doi: 10.3724/SP.J.1006.2021.04279
Lu H Q, Tang W, Luo Z, Kong X Q, Li Z H, Xu S Z, Xin C S. Effects of commercial organic fertilizer substituting chemical fertilizer partially on soil nutrients, plant development, and yield in cotton. Acta Agron Sin, 2021, 47: 2511-2521. (in Chinese with English abstract)
[13] 王艳丽, 吴鹏年, 李培富, 王西娜, 朱旭. 有机肥配施氮肥对滴灌春玉米产量及土壤肥力状况的影响. 作物学报, 2019, 45: 1230-1237.
doi: 10.3724/SP.J.1006.2019.83080
Wang Y L, Wu P N, Li P F, Wang X N, Zhu X. Effects of organic manure combined with nitrogen fertilizer on spring maize yield and soil fertility under drip irrigation. Acta Agron Sin, 2019, 45: 1230-1237. (in Chinese with English abstract)
[36] 习斌, 翟丽梅, 刘申, 刘宏斌, 杨波, 任天志. 有机无机肥配施对玉米产量及土壤氮磷淋溶的影响. 植物营养与肥料学报, 2015, 21: 326-335.
Xi B, Zhai L M, Liu S, Liu H B, Yang B, Ren T Z. Effects of combination of organic and inorganic fertilization on maize yield and soil nitrogen and phosphorus leaching. J Plant Nutr Fert, 2015, 21: 326-335. (in Chinese with English abstract)
[37] Geng Y H, Cao G J, Wang L H, Wang S H. Effects of equal chemical fertilizer substitutions with organic manure on yield, dry matter, and nitrogen uptake of spring maize and soil nitrogen distribution. PLoS One, 2019, 14: e0219512.
doi: 10.1371/journal.pone.0219512
[38] 罗洋, 郑金玉, 郑洪兵, 李瑞平, 李伟堂, 刘武仁, 董英山. 有机无机肥料配合施用对玉米生长发育及产量的影响. 玉米科学, 2014, 22(5): 132-136.
Luo Y, Zheng J Y, Zheng H B, Li R P, Li W T, Liu W R, Dong Y S. Effects of manure and fertilizer application on growth and yield of maize. J Maize Sci, 2014, 22(5): 132-136. (in Chinese with English abstract)
[39] 薛同宣, 张开心, 孔雀飞, 杨守军, 张忠兰, 王洪芹. 无抗养殖鸡粪与化肥配施对玉米生长及土壤理化性状的影响. 山东农业科学, 2020, 52(4): 106-111.
Xue T X, Zhang K X, Kong Q F, Yang S J, Zhang Z L, Wang H Q. Effect of combined application of antibiotic-free chicken manure with chemical fertilizer on maize growth and soil properties. Shandong Agric Sci, 2020, 52(4): 106-111. (in Chinese with English abstract)
[40] Zhao J, Ni T, Li J, Lu Q, Fang Z Y, Huang Q W, Zhang R F, Li R, Shen B, Shen Q R. Effects of organic-inorganic compound fertilizer with reduced chemical fertilizer application on crop yields, soil biological activity and bacterial community structure in a rice-wheat cropping system. Appl Soil Ecol, 2016, 99: 1-12.
doi: 10.1016/j.apsoil.2015.11.006
[41] 王元元, 李超, 刘思超, 杨晶, 唐利忠, 屠乃美, 易镇邪. 有机肥对水稻产量、品质及土壤特性的影响研究进展. 中国稻米, 2019, 25(1): 15-20.
doi: 10.3969/j.issn.1006-8082.2019.01.004
Wang Y Y, Li C, Liu S C, Yang J, Tang L Z, Tu N M, Yi Z X. Research advances on effects of organic fertilizer on yield, quality of rice and soil characteristics. China Rice, 2019, 25(1): 15-20. (in Chinese with English abstract)
doi: 10.3969/j.issn.1006-8082.2019.01.004
[14] 何浩, 张宇彤, 危常州, 李俊华. 等养分条件下不同有机肥氮替代率对玉米生长及土壤肥力的影响. 核农学报, 2021, 35: 454-461.
doi: 10.11869/j.issn.100-8551.2021.02.0454
He H, Zhang Y T, Wei C Z, Li J H. Effects of different organic fertilizer replacement rates on maize growth and soil fertility under equal nutrient conditions. Acta Agric Nucl Sin, 2021, 35: 454-461. (in Chinese with English abstract)
[15] 王兴龙, 莫太相, 邱传志, 刘晓林, 陈伟, 袁继超, 张翔, 孔凡磊. 减氮配施有机肥对土壤碳库及玉米产量的影响. 生态环境学报, 2017, 26: 1342-1348.
doi: 10.16258/j.cnki.1674-5906.2017.08.009
Wang X L, Mo T X, Qiu C Z, Liu X L, Chen W, Yuan J C, Zhang X, Kong F L. Effect of nitrogen reduction with organic fertilizer application on soil carbon pool management index and maize yield. Ecol Environ Sci, 2017, 26: 1342-1348. (in Chinese with English abstract)
[16] 刘斌祥, 王兴龙, 周芳, 杜伦静, 金容, 冯冬菊, 袁继超, 孔凡磊. 减氮配施不同种类有机肥对玉米物质分配、转运与产量的影响. 生态学杂志, 2020, 39: 130-138.
Liu B X, Wang X L, Zhou F, Du L J, Jin R, Feng D J, Yuan J C, Kong F L. Effects of reducing nitrogen combined with application of different types of organic fertilizers on dry matter allocation, transport, and yield of maize. Chin J Ecol, 2020, 39: 130-138. (in Chinese with English abstract)
[17] 谢军, 赵亚南, 陈轩敬, 李丹萍, 徐春丽, 王珂, 张跃强, 石孝均. 有机肥氮替代化肥氮提高玉米产量和氮素吸收利用效率. 中国农业科学, 2016, 49: 3934-3943.
doi: 10.3864/j.issn.0578-1752.2016.20.008
Xie J, Zhao Y N, Chen X J, Li D P, Xu C L, Wang K, Zhang Y Q, Shi X J. Nitrogen of organic manure replacing chemical nitrogenous fertilizer improve maize yield and nitrogen uptake and utilization efficiency. Sci Agric Sin, 2016, 49: 3934-3943. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2016.20.008
[18] 朱浩宇, 高明, 龙翼, 徐国鑫, 王富华, 王子芳. 化肥减量有机替代对紫色土旱坡地土壤氮磷养分及作物产量的影响. 环境科学, 2020, 41: 1921-1929.
Zhu H Y, Gao M, Long Y, Xu G X, Wang F H, Wang Z F. Effects of fertilizer reduction and application of organic fertilizer on soil nitrogen and phosphorus nutrients and crop yield in a purple soil sloping field. Chin J Environ Sci, 2020, 41: 1921-1929. (in Chinese with English abstract)
[42] 李燕青, 林治安, 温延臣, 车升国, 孙文彦, 赵秉强. 不同类型有机肥与化肥配施对小麦品质的影响. 植物营养与肥料学报, 2016, 22: 1513-1522.
Li Y Q, Lin Z A, Wen Y C, Che S G, Sun W Y, Zhao B Q. Effects of combined application of chemical fertilizers with different sources of organic manure on the grain quality of winter wheat. J Plant Nutr Fert, 2016, 22: 1513-1522. (in Chinese with English abstract)
[19] 焦金龙, 李友强, 吴玲, 尚静, 高世斌, 刘海岚, 吴元奇, 林海建. 化肥减量配施有机肥对青贮玉米产量、营养品质及土壤养分的影响. 华北农学报, 2022, 37(3): 128-135.
doi: 10.7668/hbnxb.20192578
Jiao J L, Li Y Q, Wu L, Shang J, Gao S B, Liu H L, Wu Y Q, Lin H J. Effects of fertilizer reduction combined with organic fertilizer on yield, nutritional value and soil nutrient of silage maize. Acta Agric Boreali-Sin, 2022, 37(3): 128-135. (in Chinese with English abstract)
doi: 10.7668/hbnxb.20192578
[1] HAN Jie-Nan, ZHANG Ze, LIU Xiao-Li, LI Ran, SHANG-GUAN Xiao-Chuan, ZHOU Ting-Fang, PAN Yue, HAO Zhuan-Fang, WENG Jian-Feng, YONG Hong-Jun, ZHOU Zhi-Qiang, XU Jing-Yu, LI Xin-Hai, LI Ming-Shun. Analysis of differential accumulation of starch in waxy maize grain caused by the o2 mutation gene [J]. Acta Agronomica Sinica, 2024, 50(5): 1207-1222.
[2] YANG Chun-Ju, TANG Dao-Bin, ZHANG Kai, DU Kang, HUANG Hong, QIAO Huan-Huan, WANG Ji-Chun, LYU Chang-Wen. Effect of reducing nitrogen and potassium application on yield and quality in sweet potato [J]. Acta Agronomica Sinica, 2024, 50(5): 1341-1350.
[3] WANG Yong-Liang, XU Zi-Hang, LI Shen, LIANG Zhe-Ming, BAI Ju, YANG Zhi-Ping. Effects of different mulching measures on moisture and temperature of soil and yield and water use efficiency of spring maize [J]. Acta Agronomica Sinica, 2024, 50(5): 1312-1324.
[4] HU Ming-Ming, DING Feng, PENG Zhi-Yun, XIANG Kai-Hong, LI Yu, ZHANG Yu-Jie, YANG Zhi-Yuan, SUN Yong-Jian, and MA Jun. Effects of straw returning to field combined with water and N management on rice yield formation and N uptake and utilization under diversified cropping patterns [J]. Acta Agronomica Sinica, 2024, 50(5): 1236-1252.
[5] GENG Xiao-Yu, ZHANG Xiang, LIU Yang, ZUO Bo-Yuan, ZHU Wang, MA Wei-Yi, WANG Lu-Lu, MENG Tian-Yao, GAO Ping-Lei, CHEN Ying-Long, XU Ke, DAI Qi-Gen, WEI Huan-He. Grain yield and its characteristics of japonica/indica hybrids rice in coastal saline-alkali lands [J]. Acta Agronomica Sinica, 2024, 50(5): 1253-1270.
[6] CAO Xin-Yuan, DU Ming-Li, WANG Yu-Cheng, CHEN Xin-Hua, CHEN Jia-Xin, LING Xiao-Xia, HUANG Jian-Liang, PENG Shao-Bing, DENG Nan-Yan. Annual yield gap and the causes assessment for rice-rapeseed cropping system: an example from Wuxue city, Hubei province [J]. Acta Agronomica Sinica, 2024, 50(5): 1287-1299.
[7] CHEN Yu-Zhang, WU Song-Guo, LU Cheng-Lin, LI Rui, GONG Li-Juan, WEN Yue, NING Jia-Xin, WU Yu-Han. Effects of strip-mulching ridges on runoff and soil water use for sorghum in southwest yellow soil slope farmland [J]. Acta Agronomica Sinica, 2024, 50(5): 1325-1340.
[8] ZOU Jia-Qi, WANG Zhong-Lin, TAN Xian-Ming, CHEN Liao-Yuan, YANG Wen-Yu, YANG Feng. Estimation of maize grain yield under drought stress based on continuous wavelet transform [J]. Acta Agronomica Sinica, 2024, 50(4): 1030-1042.
[9] WU Xia-Yu, LI Pan, WEI Jin-Gui, FAN Hong, HE Wei, FAN Zhi-Long, HU Fa-Long, CHAI Qiang, YIN Wen. Effect of reduced irrigation and combined application of organic and chemical fertilizers on photosynthetic physiology, grain yield and quality of maize in northwestern irrigation areas [J]. Acta Agronomica Sinica, 2024, 50(4): 1065-1079.
[10] ZHANG Zhen, ZHAO Jun-Ye, SHI Yu, ZHANG Yong-Li, YU Zhen-Wen. Effects of different sowing space on photosynthetic characteristics after anthesis and grain yield of wheat [J]. Acta Agronomica Sinica, 2024, 50(4): 981-990.
[11] YUE Hai-Wang, WEI Jian-Wei, LIU Peng-Cheng, CHEN Shu-Ping, BU Jun-Zhou. Comprehensive evaluation of maize hybrids in the mega-environments of Huanghuaihai plain based on GYT biplot analysis [J]. Acta Agronomica Sinica, 2024, 50(4): 836-856.
[12] LIU Cheng-Min, MEN Ya-Qi, QIN Du-Lin, YAN Xiao-Yu, ZHANG Le, MENG Hao, SU Xun-Ya, SUN Xue-Zhen, SONG Xian-Liang, MAO Li-Li. Effects of nitrogen application rate on cotton yield and nitrogen utilization under long-term straw return to the field [J]. Acta Agronomica Sinica, 2024, 50(4): 1043-1052.
[13] HE Jia-Qi, BAI Yi-Xiong, YAO Xiao-Hua, YAO You-Hua, AN Li-Kun, WANG Yu-Qin, WANG Xiao-Ping, LI Xin, CUI Yong-Mei, WU Kun-Lun. Effects of cutting on the recovery characteristics, grain and straw yield, and quality traits of Qingke [J]. Acta Agronomica Sinica, 2024, 50(3): 747-755.
[14] LI Bo-Yang, YE Yin, CHU Rui-Wen, JING Miao, ZHANG Sui-Qi, YAN Jia-Kun. Effects of biochar application on dry matter accumulation, transport, and distribution of foxtail millet and soil physicochemical properties [J]. Acta Agronomica Sinica, 2024, 50(3): 695-708.
[15] SHANG Yong-Pan, YU Ai-Zhong, WANG Yu-Long, WANG Peng-Fei, LI Yue, CHAI Jian, LYU Han-Qiang, YANG Xue-Hui, WANG Feng. Effects of green manure application methods on dry matter accumulation, distribution, and yield of maize in oasis irrigation area [J]. Acta Agronomica Sinica, 2024, 50(3): 686-694.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .