Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (2): 358-369.doi: 10.3724/SP.J.1006.2025.44091

• CROP GENETICS & BREEDING · GERMPLASM RESOURCES · MOLECULAR GENETICS • Previous Articles     Next Articles

Serratia nematodiphila TG10 enhanced salt-alkali tolerance in rapeseed

SU Qing-Fang1,2,SUN Xiao-Zhao1,2,LIN Yang1,FU Yan-Ping1,CHENG Jia-Sen1,XIE Jia-Tao1,2,JIANG Dao-Hong1,2,CHEN Tao1,2,*   

  1. 1 College of Plant Science and Technology, Huazhong Agricultural University / National Key Laboratory of Agricultural Microbiology, Wuhan 430070, Hubei, China; 2 Hubei Hongshan Laboratory, Wuhan 430070, Hubei, China
  • Received:2024-06-07 Revised:2024-09-18 Accepted:2024-09-18 Online:2025-02-12 Published:2024-10-10
  • Supported by:
    This study was supported by the Fundamental Research Funds for the Central Universities (X2662024ZKPY004, 2662023PY006) and the China Agriculture Research System of MOF and MARA (CARS-12).

Abstract:

Rapeseed exhibits strong resistance to salt-alkali stress. In this study, a strain of Serratia nematodiphila TG10 was isolated from saline-alkali soil in Tianjin. This strain can not only grow on a 6% NaCl R2A medium plate with a pH of 10.15 but can also colonize the roots and rhizosphere of rapeseed. Under salt stress, the TG10 strain promoted the growth of both Arabidopsis and rapeseed. In pot experiments using a 1.2% salt-containing matrix soil and saline-alkali soil from Harbin, TG10 treatment enhanced the fresh and dry weights of rapeseed, reduced Na? content, and increased the K?/Na? ratio. In experiments with saline-alkali soils from Tianjin and Jilin, TG10 treatment significantly increased the fresh weight, chlorophyll content, and proline levels in rapeseed. Transcriptome analysis of rapeseed grown in Jilin saline-alkali soil revealed that the cytochrome P450 metabolic pathway and glucosinolate biosynthesis pathway were significantly enriched following TG10 treatment, with significant upregulation of several stress-related genes. Additionally, the TG10 strain inhibited the growth of pathogenic bacteria in rapeseed and induced resistance against Sclerotinia sclerotiorum and Botrytis cinerea. These findings suggest that S. nematodiphila TG10 can enhance the salt tolerance of rapeseed in various types of saline-alkali soils, providing a valuable resource and theoretical foundation for the biorefining of microorganisms in saline-alkali environments.

Key words: saline-alkali soil, rapeseed, Serratia nematodiphila, saline-alkali resistance mechanism, induced resistance

[1] Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol, 2008, 59: 651–681.

[2王雷, 郭岩, 杨淑华. 非生物胁迫与环境适应性育种的现状及对策. 中国科学: 生命科学, 2021, 51: 1424–1434.

Wang L, Guo Y, Yang S H. Designed breeding for adaptation of crops to environmental abiotic stresses. Sci Sin Vitae, 2021, 51: 1424–1434 (in Chinese with English abstract).

[3] Cao Y B, Song H F, Zhang L Y. New insight into plant saline-alkali tolerance mechanisms and application to breeding. Int J Mol Sci, 2022, 23: 16048.

[4] van Zelm E, Zhang Y X, Testerink C. Salt tolerance mechanisms of plants. Annu Rev Plant Biol, 2020, 71: 403–433.

[5] Ludwiczak A, Osiak M, Cárdenas-Pérez S, Lubińska-Mielińska S, Piernik A. Osmotic stress or ionic composition: which affects the early growth of crop species more? Agronomy, 2021, 11: 435.

[6] Yang Y Q, Guo Y. Elucidating the molecular mechanisms mediating plant salt-stress responses. New Phytol, 2018, 217: 523–539.

[7汪波, 文静, 张凤华, 李立军, 来永才, 任长忠, 鲁剑巍, 沈金雄, 郭亮, 周广生, 傅廷栋. 耐盐碱油菜品种选育及修复利用盐碱地研究进展. 科技导报, 2021, 39(23): 59–64.

Wang B, Wen J, Zhang F H, Li L J, Lai Y C, Ren C Z, Lu J W, Shen J X, Guo L, Zhou G S, Fu T D. Research progress in breeding of saline-alkaline tolerant rapeseed and restoring the salinate land. Sci Technol Rev, 2021, 39(23): 59–64 (in Chinese with English abstract).

[8王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价. 作物学报, 2022, 48: 1451–1462. 

Wang W N, Ge J Z, Yang H C, Yin F T, Huang T L, Kuai J, Wang J, Wang B, Zhou G S, Fu T D. Adaptation of feed crops to saline-alkali soil stress and effect of improving saline-alkali soil. Acta Agron Sin, 2022, 48: 1451–1462 (in Chinese with English abstract).

[9] Coban O, De Deyn G B, van der Ploeg M. Soil microbiota as game-changers in restoration of degraded lands. Science, 2022, 375: abe0725.

[10] Kim M J, Radhakrishnan R, Kang S M, You Y H, Jeong E J, Kim J G, Lee I J. Plant growth promoting effect of Bacillus amyloliquefaciens H-2-5 on crop plants and influence on physiological changes in soybean under soil salinity. Physiol Mol Biol Plants, 2017, 23: 571–580.

[11] Hasanuzzaman M, Raihan M R H, Nowroz F, Fujita M. Insight into the mechanism of salt-induced oxidative stress tolerance in soybean by the application of Bacillus subtilis: coordinated actions of osmoregulation, ion homeostasis, antioxidant defense, and methylglyoxal detoxification. Antioxidants (Basel), 2022, 11: 1856.

[12] Miller A, Knowles A, Nielsen B, Hill J. Halophile inoculation significantly improves growth of Alfalfa under saline conditions. FASEB J, 2020, 34: 1.

[13] Anam G B, Reddy M S, Ahn Y H. Characterization of Trichoderma asperellum RM-28 for its sodic/saline-alkali tolerance and plant growth promoting activities to alleviate toxicity of red mud. Sci Total Environ, 2019, 662: 462–469.

[14王启尧, 赵庚星, 赵永昶, 杨婧文, 张术伟, 李涛, 李建伟, 潘登, 涂强. 滨海盐渍棉田施用微生物菌肥的降盐效果及棉花长势响应. 华北农学报, 2021, 36: 267–274.

Wang Q Y, Zhao G X, Zhao Y C, Yang J W, Zhang S W, Li T, Li J W, Pan D, Tu Q. Effects of microbial fertilizer on salt reduction and cotton growth response in coastal salted cotton field. Acta Agric Boreali Sin, 2021, 36: 267–274 (in Chinese with English abstract).

[15王启尧, 赵庚星, 李涛, 李建伟, 潘登, 涂强. 滨海盐渍麦田施用微生物菌肥的降盐效果及冬小麦长势响应. 中国农学通报, 2021, 37(24): 60–66.

Wang Q Y, Zhao G X, Li T, Li J W, Pan D, Tu Q. Microbial fertilizers application in coastal saline wheat field: the salt-reducing effect and the growth response of winter wheat. Chin Agric Sci Bull, 2021, 37(24): 60–66 (in Chinese with English abstract).

[16舒展, 张晓素, 陈娟, 陈根云, 许大全. 叶绿素含量测定的简化植物生理学通讯, 2010, 46: 399–402.

Shu Z, Zhang X S, Chen J, Chen G Y, Xu D Q. The simplification of chlorophyll content measurement. Plant Physiol Commun, 2010, 46: 399–402 (in Chinese with English abstract).

[17职明星, 李秀菊. 脯氨酸测定方法的改进. 植物生理学通讯, 2005, 41: 355–357.

Zhi M X, Li X J. Improvement on the method for measuring proline content. Plant Physiol Commun, 2005, 41: 355–357 (in Chinese with English abstract).

[18姬亚丽. Trizol试剂法提取金鱼藻总RNA的技术方法改进. 高原科学研究, 2019, 3(2): 51–58.

Ji Y L. A modification on the Trizol method for extracting the total RNA of Ceratophyllum demersum L. Plateau Sci Res, 2019, 3(2): 51–58 (in Chinese with English abstract).

[19] Hanin M, Ebel C, Ngom M, Laplaze L, Masmoudi K. New insights on plant salt tolerance mechanisms and their potential use for breeding. Front Plant Sci, 2016, 7: 1787.

[20] Wu Y, Jin X, Liao W B, Hu L L, Dawuda M M, Zhao X J, Tang Z Q, Gong T Y, Yu J H. 5-aminolevulinic acid (ALA) alleviated salinity stress in cucumber seedlings by enhancing chlorophyll synthesis pathway. Front Plant Sci, 2018, 9: 635.

[21] 钟华, 董洁, 董宽虎. 盐胁迫对扁蓿豆幼苗脯氨酸积累及其代谢关键酶活性的影响. 草业学报, 2018, 27(4): 189–194

Zhong H, Dong J, Dong K H. Effect of salt stress on proline accumulation and the activities of the key enzymes involved in proline metabolism in Medicago ruthenica seedlings . Acat Pratac Sin, 2018, 27(4): 189–194 (in Chinese with English abstract).

[22] de Oliveira F K, Santos L O, Buffon J G. Mechanism of action, sources, and application of peroxidases. Food Res Int, 2021, 143: 110266.

[23] Shim J S, Jeong H I, Bang S W, Jung S E, Kim G, Kim Y S, Redillas M C F R, Oh S J, Seo J S, Kim J K. Drought-induced branched-chain amino acid aminotransferase enhances drought tolerance in rice. Plant Physiol, 2023,191: 1435–1447.

[24] Sun K T, Fang H, Chen Y, Zhuang Z M, Chen Q, Shan T Y, Khan M K R, Zhang J, Wang B H. Genome-wide analysis of the cytochrome P450 gene family involved in salt tolerance in Gossypium hirsutum. Front Plant Sci, 2021, 12: 685054.

[25黄建斌, 周文杰, 房磊, 孙明明, 李鑫, 李晶晶, 李晓婷, 唐艳艳, 姜德锋, 朱虹, 隋炯明, 乔利仙. ACC氧化酶基因AhACOs对花生耐盐性的影响. 生物工程学报, 2023, 39: 603–613.

Huang J B, Zhou W J, Fang L, Sun M M, Li X, Li J J, Li X T, Tang Y Y, Jiang D F, Zhu H, Sui J M, Qiao L X. Effect of ACC oxidase gene AhACOs on salt tolerance of peanut. Chin J Biotechnol, 2023, 39: 603–613(in Chinese with English abstract).

[26] Niu M X, Feng C H, Liu M Y, Liu X, Liu S J, Liu C, Yin W L, Xia X L. Genome-wide identification of poplar GSTU gene family and its PtrGSTU23 and PtrGSTU40 to improve salt tolerance in poplar. Ind Crops Prod, 2024, 209: 117945.

[27] Horváth E, Bela K, Papdi C, Gallé Á, Szabados L, Tari I, Csiszár J. The role of Arabidopsis glutathione transferase F9 gene under oxidative stress in seedlings. Acta Biol Hung, 2015, 66: 406–418.

[28] Rosa-Téllez S, Anoman A D, Alcántara-Enguídanos A, Garza-Aguirre R A, Alseekh S, Ros R. PGDH family genes differentially affect Arabidopsis tolerance to salt stress. Plant Sci, 2020, 290: 110284.

[29] Anjum N A, Gill R, Kaushik M, Hasanuzzaman M, Pereira E, Ahmad I, Tuteja N, Gill S S. ATP-sulfurylase, sulfur-compounds, and plant stress tolerance. Front Plant Sci, 2015, 6: 210.

[30] Dong N Q, Sun Y W, Guo T, Shi C L, Zhang Y M, Kan Y, Xiang Y H, Zhang H, Yang Y B, Li Y C, Zhao H Y, Yu H X, Lu Z Q, Wang Y, Ye W W, Shan J X, Lin H X. UDP-glucosyltransferase regulates grain size and abiotic stress tolerance associated with metabolic flux redirection in rice. Nat Commun, 2020, 11: 2629.

[31] Tiwari R, Garg K, Senthil-Kumar M, Bisht N C. XLG2 and CORI3 function additively to regulate plant defense against the necrotrophic pathogen Sclerotinia sclerotiorum. Plant J, 2024, 117: 616–631.

[32] Gondil V S, Asif M, Bhalla T C. Optimization of physicochemical parameters influencing the production of prodigiosin from Serratia nematodiphila RL2 and exploring its antibacterial activity. 3 Biotech, 2017, 7: 338.

[33] Patil C D, Patil S V, Salunke B K, Salunkhe R B. Insecticidal potency of bacterial species Bacillus thuringiensis SV2 and Serratia nematodiphila SV6 against larvae of mosquito species Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus. Parasitol Res, 2012, 110: 1841–1847.

[34] Sutthisa W. Comparison of the antagonistic potential of the entomopathogenic bacterium Serratia nematodiphila GCSR38 with other effective microorganisms for the control of rice bacterial leaf blight. J Pure Appl Microbiol, 2022, 16: 557–566.

[35] Dastager S G, Deepa C K, Pandey A. Potential plant growth-promoting activity of Serratia nematodiphila NII-0928 on black pepper (Piper nigrum L.). World J Microbiol Biotechnol, 2011, 27: 259–265.

[36] Kang S M, Khan A L, Waqas M, You Y H, Hamayun M, Joo G J, Shahzad R, Choi K S, Lee I J. Gibberellin-producing Serratia nematodiphila PEJ1011 ameliorates low temperature stress in Capsicum annuum L. Eur J Soil Biol, 2015, 68: 85–93.

[37梁洪榜, 赵丽, 周云鹏, 刘畅, 和婧, 匡乃昆, 李云开. 盐碱地应用根际促生菌对土壤改良、作物产量与品质的影响: 基于Meta分析. 土壤, 2022, 54: 1257–1264

Liang H B, Zhao L, Zhou Y P, Liu C, He J, Kuang N K, Li Y K. Effects of rhizosphere growth-promoting bacteria on soil improvement, crop yield and quality in saline-alkali land: a meta-analysis. Soils, 2022, 54: 1257–1264 (in Chinese with English abstract).

[38] Han Y J, Liu S X, Chen F L, Deng X L, Miao Z, Wu Z S, Ye B C. Characteristics of plant growth-promoting rhizobacteria SCPG-7 and its effect on the growth of Capsicum annuum L. Environ Sci Pollut Res Int, 2021, 28: 11323–11332.

[39] Lotfi N, Soleimani A, Çakmakçı R, Vahdati K, Mohammadi P. Characterization of plant growth-promoting rhizobacteria (PGPR) in Persian walnut associated with drought stress tolerance. Sci Rep, 2022, 12: 12725. 

[40陈小娟, 刘铠鸣, 宣明刚, 邵佳慧, 张瑞福. 增强作物耐盐胁迫能力的根际促生菌筛选、鉴定及田间应用效果. 南京农业大学学报, 2020, 43: 452–459.

Chen X J, Liu K M, Xuan M G, Shao J H, Zhang R F. Screening and identification of plant growth-promoting rhizobacteria to enhance salt stress tolerance of crops and their effects in field experiment. J Nanjing Agric Univ, 2020, 43: 452–459 (in Chinese with English abstract)

[41] Mishra P, Sharma P. Superoxide Dismutases (SODs) and their role in regulating abiotic stress induced oxidative stress in plants. Front Plant Sci, 2024, 15: 53–88.

[42] Fu H Q, Yang Y Q. How plants tolerate salt stress. Curr Issues Mol Biol, 2023, 45: 5914–5934.

[43] Gong Y, Chen L J, Pan S Y, Li X W, Xu M J, Zhang C M, Xing K, Qin S. Antifungal potential evaluation and alleviation of salt stress in tomato seedlings by a halotolerant plant growth-promoting actinomycete Streptomyces sp. KLBMP5084. Rhizosphere, 2020, 16: 100262.

[44] Mehrabi S S, Sabokdast M, Bihamta M R, Dedičová B. The coupling effects of PGPR inoculation and foliar spraying of strigolactone in mitigating the negative effect of salt stress in wheat plants: insights from phytochemical, growth, and yield attributes. Agriculture, 2024, 14: 732.

[1] QIN Meng-Qian, HUANG Wei, CHEN Min, NING Ning, HE De-Zhi, HU Bing, XIA Qi-Xin, JIANG Bo, CHENG Tai, CHANG Hai-Bin, WANG Jing, ZHAO Jie, WANG Bo, KUAI Jie, XU Zheng-Hua, ZHOU Guang-Sheng. Effect of nitrogen fertilizer management on yield and resistance of late-seeded rapeseed [J]. Acta Agronomica Sinica, 2025, 51(2): 432-446.
[2] WANG Chong-Ming, LU Zhi-Feng, YAN Jin-Yao, SONG Yi, WANG Kun-Kun, FANG Ya-Ting, LI Xiao-Kun, REN Tao, CONG Ri-Huan, LU Jian-Wei. Effect of phosphorus fertilizer rates on crop yield, phosphorus uptake and its stability in rapeseed-rice rotation system [J]. Acta Agronomica Sinica, 2025, 51(2): 447-458.
[3] CHEN Yu-Ting, DING Xiao-Yu, XU Ben-Bo, ZHANG Xue-Kun, XU Jin-Song, YIN Yan. Effects of climate warming on yield, quality-related and agronomic traits of winter rapeseed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2025, 51(2): 516-525.
[4] ZHANG Qi-Qi, CHEN Jie-Chang, KUAI Jie, WANG Bo, WANG Jing, XU Zheng-Hua, ZHAO Jie, ZHAO Si-Ming, JIA Cai-Hua, ZHOU Guang-Sheng. Effect of high density planting on the quality of cold pressed rapeseed oil [J]. Acta Agronomica Sinica, 2024, 50(9): 2358-2370.
[5] SUN Zhao-Hua, REN Hao, WANG Hong-Zhang, WANG Zi-Qiang, YAO Hai-Yan, XIN Ai-Mei, ZHAO Bin, ZHANG Ji-Wang, REN Bai-Zhao, LIU Peng. Effects of foliar silicon sprays on leaf photosynthetic performance and grain yield of summer maize in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2024, 50(9): 2383-2395.
[6] LOU Hong-Xiang, HUANG Xiao-Yu, JIANG Meng, NING Ning, BIAN Meng-Lei, ZHANG Lei, LUO Dong-Xu, QIN Meng-Qian, KUAI Jie, WANG Bo, WANG Jing, ZHAO Jie, XU Zheng-Hua, ZHOU Guang-Sheng. Optimal allocation of sowing date and sowing rate of late-sowing rapeseed in the Yangtze River Basin [J]. Acta Agronomica Sinica, 2024, 50(8): 2091-2105.
[7] LIU Chen, WANG Kun-Kun, LIAO Shi-Peng, YANG Jia-Qun, CONG Ri-Huan, REN Tao, LI Xiao-Kun, LU Jian-Wei. Effects of nitrogen fertilizer application levels on yield and nitrogen absorption and utilization of oilseed rape under maize-oilseed rape and rice-oilseed rape rotation fields [J]. Acta Agronomica Sinica, 2024, 50(8): 2067-2077.
[8] YAN Zi-Heng, WANG Xian-Ling, SHAO Dong-Li, GAO Geng-Dong, NING Ning, JIA Cai-Hua, KUAI Jie, WANG Bo, XU Zheng-Hua, WANG Jing, ZHAO Jie, ZHOU Guang-Sheng. Effect of chlorophyll degradation rate in seed on key quality of rapeseed oil [J]. Acta Agronomica Sinica, 2024, 50(7): 1818-1828.
[9] XIE Xiong-Ze, XIE Jie, CHU Qian-Mei, YIN Yu-Feng, YU Xiao-Hong, WANG Dun, FENG Peng. Analysis of water requirement and water surplus/deficit characteristics of winter rapeseed in Yangtze River Basin [J]. Acta Agronomica Sinica, 2024, 50(7): 1829-1840.
[10] NING Ning, YU Xin-Ying, QIN Meng-Qian, LOU Hong-Xiang, WANG Zong-Kai, WANG Chun-Yun, JIA Cai-Hua, XU Zheng-Hua, WANG Jing, KUAI Jie, WANG Bo, ZHAO Jie, ZHOU Guang-Sheng. Effect of key cultivated measures on rapeseed oil comprehensive quality [J]. Acta Agronomica Sinica, 2024, 50(6): 1554-1567.
[11] WANG Long, LI Jing, QIAN Chen, LIN Guo-Bing, LI Yi-Yang, YANG Guang, ZUO Qing-Song. Effects of salt stress on yield, quality, and physiology in rapeseed [J]. Acta Agronomica Sinica, 2024, 50(6): 1597-1607.
[12] WANG Xian-Ling, JIANG Yue, LEI Yi-Zhong, XIAO Sheng-Nan, SHE Hui-Jie, DUAN Sheng-Xing, HUANG Ming, KUAI Jie, WANG Bo, WANG Jing, ZHAO Jie, XU Zheng-Hua, ZHOU Guang-Sheng. Effects of seed soaking with exogenous substances on late-seeded rapeseed cold resistance of during overwintering period and yield [J]. Acta Agronomica Sinica, 2024, 50(5): 1271-1286.
[13] CAO Xin-Yuan, DU Ming-Li, WANG Yu-Cheng, CHEN Xin-Hua, CHEN Jia-Xin, LING Xiao-Xia, HUANG Jian-Liang, PENG Shao-Bing, DENG Nan-Yan. Evaluation of annual yield gap and yield limiting facters in rice-rapeseed cropping system: an example from Wuxue city, Hubei province, China [J]. Acta Agronomica Sinica, 2024, 50(5): 1287-1299.
[14] GUO Mao-Chang, CHEN Du-Juan, YUAN Jin-Zhan, ZHANG Zhe, JIANG Bo, YANG Shu-Ting, CHEN Min, GUO An-Da, WANG Qi, KUAI Jie, WANG Bo, WANG Jing, ZHAO Jie, XU Zheng-Hua, ZHOU Guang-Sheng. Effect of foliar spraying regulators on nitrogen utilization during the overwintering stage and yield of late-sowing rapeseed [J]. Acta Agronomica Sinica, 2024, 50(11): 2870-2882.
[15] YAN Jin-Yao, SONG Yi, LU Zhi-Feng, REN Tao, LU Jian-Wei. Effect of phosphorus fertilizer rate on rapeseed yield and quality (Brassica napus L.) [J]. Acta Agronomica Sinica, 2023, 49(6): 1668-1677.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!