Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (5): 1378-1388.doi: 10.3724/SP.J.1006.2025.43036

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of combined application of chemical fertilizer and organic materials on the soil bacterial and fungal community structure in maize fields

JIANG Yu-Zhou1,3(), WANG Jia1, ZHANG Hong-Yuan2, FENG Wen-Hao2, WANG Peng1,3, LI Yu-Yi2,*()   

  1. 1Agronomy College, Heilongjiang Bayi Agricultural University, Daqing 163391, Heilongjiang, China
    2Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    3Key Laboratory of Low-carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Daqing 163391, Heilongjiang, China
  • Received:2024-07-31 Accepted:2025-01-23 Online:2025-05-12 Published:2025-02-05
  • Contact: *E-mail: yuyili@caas.ac.cn
  • Supported by:
    China Agriculture Research System of MOF and MARA(CARS-02-24)

Abstract:

The neglect of organic material inputs in agricultural fields has significant impacts on the structure of soil microbial communities, reduces soil nutrient availability, and leads to low maize yields. This study investigated the effects of organic material amendments on soil bacterial and fungal communities, soil chemical properties, and maize yield. The aim was to explore changes in soil microbial community structure and analyze the relationship between microbial communities and soil chemical properties, providing a scientific basis for optimized fertilization practices, the maintenance of soil microbial ecosystems, and sustainable agricultural development. A two-year field experiment with continuous fertilization treatments was conducted to evaluate the effects of different fertilization regimes on the bacterial and fungal communities in the rhizosphere soil of maize fields. The treatments included as follows: (1) single chemical fertilizer application (control), (2) chemical fertilizer + straw rot, (3) chemical fertilizer + fulvic acid, and (4) chemical fertilizer + chicken manure. The results showed that combining chemical fertilizer with organic materials increased maize yield and enhanced soil nutrient availability. Continuous application of organic materials also influenced the alpha diversity of soil microorganisms (bacteria and fungi). For example, compared with the single chemical fertilizer treatment, the chemical fertilizer + straw rot treatment increased the bacterial Shannon index, ACE index, and Chao1 index by 2.42%, 23.24%, and 23.19%, respectively. However, fungal alpha diversity showed a decreasing trend under the same treatment. At the taxonomic level, Vicinamibacterales and Sphingomonadales (from Acidobacteria and Proteobacteria, respectively) were the dominant bacterial orders, while Sordariales (from Ascomycota) was the dominant fungal order. Soil microbial diversity was strongly correlated with soil nutrient content. In conclusion, the combined application of chemical fertilizers and organic materials can regulate soil microbial community structure, enhance microbial diversity, and improve soil health and productivity in dryland maize farming systems. In particular, fertilizer combined with straw rot has the best effect.

Key words: fertilization, maize field, humic acid, microbial interaction, keystone taxa

Table 1

Nutrient input of fertilizer under different treatments in field trials"

处理
Treatment
化肥
Chemical fertilizer (kg hm-2)
有机肥
Ordinary organic fertilizer (kg hm-2)
N P2O5 K2O N P2O5 K2O
化肥 CF 170 75 80 0 0 0
化肥+秸秆腐熟物 CF+SR 170 75 80 33 11 34
化肥+黄腐酸 CF+FA 170 75 80 56 105 38
化肥+鸡粪 CF+CM 170 75 80 31 17 28

Table 2

Maize yield treated with different fertilizers"

处理
Treatment
产量 Yield (t hm-2)
2021 2022
CF 8.99±0.47 c 9.81±0.38 b
CF+SR 10.71±0.39 ab 11.53±0.36 a
CF+FA 9.99±0.36 bc 10.97±0.38 a
CF+CM 11.21±0.39 a 11.21±0.32 a

Table 3

Chemical properties of maize soil treated with different fertilizers"

取样时期
Sampling period
处理
Treatment
pH 有机质
Organic matter
(g kg-1)
碱解氮
Alkali-hydrolyzed nitrogen
(mg kg-1)
有效磷
Available
phosphorus
(mg kg-1)
速效钾
Rapidly available potassium
(mg kg-1)
2021年玉米收获期
Maize mature stage in 2021
CF 8.32 ±0.01 a 29.60±1.51 a 84.00±1.14 b 13.60±0.38 b 150.00±8.98 c
CF+SR 8.24 ±0.04 b 32.60±0.72 a 92.40±1.14 a 17.10±0.18 a 177.00±6.53 a
CF+FA 8.31±0.02 a 32.40±1.18 a 89.60±1.98 a 16.20±1.63 a 166.70±4.92 ab
CF+CM 8.32±0.02 a 30.70±2.12 a 84.90±1.32 b 16.80±0.76 a 158.50±2.04 bc
2022年玉米收获期
Maize mature stage in 2022
CF 8.14±0.07 a 32.91±0.87 a 86.80±1.98 a 11.52±1.15 a 270.67±14.82 a
CF+SR 8.05±0.05 a 37.47±3.05 a 91.00±1.14 a 13.71±0.88 a 284.00±26.00 a
CF+FA 8.13±0.04 a 35.42±0.79 a 91.47±7.61 a 11.99±0.68 a 260.00±2.94 a
CF+CM 8.17±0.16 a 34.30±2.00 a 94.73±5.64 a 13.09±0.99 a 274.00±17.38 a
F S 26.42 18.98 3.31 51.43 336.45
F-value T 1.73 3.85* 2.35 7.36** 2.25
S × T 0.06 0.23 1.72 0.98 1.01

Fig. 1

α-diversity of soil microorganisms in maize fields treated with different fertilization scheme Abbreviations are the same as those given in Table 1. (a) bacterial Shannon index; (b) bacterial ACE index; (c) bacterial Chao1 index; (d) fungal Shannon index; (e) fungal ACE index; (f) fungal Chao1 index."

Fig. 2

Taxonomic composition of soil microbial community in maize fields treated with different fertilization scheme Abbreviations are the same as those given in Table 1. (a) taxonomic composition of bacteria; (b) taxonomic composition of fungi."

Fig. 3

PCA analysis of soil microbial community in maize fields treated with different fertilization scheme Abbreviations are the same as those given in Table 1. (a) PCA analysis of bacteria; (b) PCA analysis of fungi."

Table 4

Pearson correlation analysis of soil microbial composition and soil chemical properties in maize field under different fertilization treatments"

菌类
Bacterial type
土壤微生物
Soil microbial
pH 有机质
Organic matter
碱解氮
Alkali-hydrolyzed nitrogen
有效磷
Available phosphorus
速效钾
Rapidly available potassium
细菌
Bacteria
Vicinamibacterales 0.233 0.334 0.927 0.402 0.628
Sphingomonadales 0.168 0.053 0.828 0.186 0.261
Gemmatimonadales 0.560 0.577 0.603 0.135 0.011*
Burkholderiales 0.115 0.011* 0.451 0.142 0.904
Unclassified_bacteria 0.623 0.719 0.615 0.310 0.016*
Rhizobiales 0.323 0.084 0.246 0.020 * 0.119
Xanthomonadales 0.322 0.064 0.742 0.689 0.905
Bryobacterales 0.746 0.986 0.787 0.459 0.413
Chitinophagales 0.150 0.464 0.732 0.097 0.605
Cytophagales 0.566 0.529 0.322 0.641 0.237
Others 0.369 0.466 0.927 0.157 0.155
Unassigned 0.715 0.090 0.817 0.938 0.454
真菌
Fungus
Sordariales 0.556 0.212 0.609 0.363 0.087
Unidentified 0.569 0.485 0.376 0.036* 0.178
Unclassified_fungi 0.672 0.992 0.303 0.285 0.602
Pleosporales 0.395 0.605 0.127 0.005** 0.692
Hypocreales 0.007** 0.195 0.601 0.805 0.691
Unclassified_Sordariomycetes 0.101 0.129 0.306 0.183 0.900
Mortierellales 0.283 0.344 0.438 0.997 1.000
Pezizales 0.229 0.347 0.460 0.154 0.024*
Agaricales 0.557 0.616 0.959 0.796 0.372
Cystofilobasidiales 0.171 0.252 0.952 0.947 0.498
Others 0.233 0.342 0.293 0.212 0.366

Fig. 4

RDA analysis of the relationship between soil microbial community composition and soil chemical properties (a) RDA analysis of bacteria; (b) RDA analysis of fungi. pH: acid basicity; OM: organic matter; AN: alkali-hydrolyzed nitrogen; AP: available phosphorus; RAP: rapidly available potassium."

[1] 赵丽丽, 张新民. 中国土壤微生物领域研究现状与前沿热点分析. 农业图书情报学报, 2022, 34(2): 75-87.
doi: 10.13998/j.cnki.issn1002-1248.21-0054
Zhao L L, Zhang X M. Analysis of research status and frontier hotspots in soil microorganism field. J Libr Inf Sci Agric, 2022, 34(2): 75-87 (in Chinese with English abstract).
[2] Falkowski P G, Fenchel T, Delong E F. The microbial engines that drive earth’s biogeochemical cycles. Science, 2008, 320: 1034-1039.
doi: 10.1126/science.1153213 pmid: 18497287
[3] Jiang R, Wang M E, Chen W P, Li X Z, Balseiro-Romero M. Changes in the integrated functional stability of microbial community under chemical stresses and the impacting factors in field soils. Ecol Indic, 2020, 110: 105919.
[4] 吴宪, 王蕊, 胡菏, 修伟明, 李刚, 赵建宁, 杨殿林, 王丽丽, 王欣奕. 潮土细菌及真菌群落对化肥减量配施有机肥和秸秆的响应. 环境科学, 2020, 41: 4669-4681.
Wu X, Wang R, Hu H, Xiu W M, Li G, Zhao J N, Yang D L, Wang L L, Wang X Y. Response of bacterial and fungal communities to chemical fertilizer reduction combined with organic fertilizer and straw in fluvo-aquic soil. Environ Sci, 2020, 41: 4669-4681 (in Chinese with English abstract).
[5] Prosser J I. Autotrophic nitrification in bacteria. Adv Microb Physiol, 1989, 30: 125-181.
pmid: 2700538
[6] Denef K, Roobroeck D, Manimel Wadu M C W, Lootens P, Boeckx P. Microbial community composition and rhizodeposit- carbon assimilation in differently managed temperate grassland soils. Soil Biol Biochem, 2009, 41: 144-153.
[7] 宋长青, 吴金水, 陆雅海, 沈其荣, 贺纪正, 黄巧云, 贾仲君, 冷疏影, 朱永官. 中国土壤微生物学研究10年回顾. 地球科学进展, 2013, 28: 1087-1105.
doi: 10.11867/j.issn.1001-8166.2013.10.1087
Song C Q, Wu J S, Lu Y H, Shen Q R, He J Z, Huang Q Y, Jia Z J, Leng S Y, Zhu Y G. Advances of soil microbiology in the last decade in China. Adv Earth Sci, 2013, 28: 1087-1105 (in Chinese with English abstract).
doi: 10.11867/j.issn.1001-8166.2013.10.1087
[8] Abbott L K, Murphy D V. Soil Biological Fertility. Netherlands: Springer, 2007. pp 1-15.
[9] 刘青丽, 李志宏, 陈顺辉, 蒋雨洲, 张云贵, 李文卿. 稻草还田对烟田追肥气态氮损失及相关微生物的影响. 农业工程学报, 2020, 36(22): 246-253.
Liu Q L, Li Z H, Chen S H, Jiang Y Z, Zhang Y G, Li W Q. Effects of rice-straw returning on gaseous nitrogen loss and microorganisms in tobacco field after topdressing. Trans CSAE, 2020, 36(22): 246-253 (in Chinese with English abstract).
[10] Kautz T, Wirth S, Ellmer F. Microbial activity in a sandy arable soil is governed by the fertilization regime. Eur J Soil Biol, 2004, 40: 87-94.
[11] Ebhin Masto R, Chhonkar P K, Singh D, Patra A K. Changes in soil biological and biochemical characteristics in a long-term field trial on a subtropical inceptisol. Soil Biol Biochem, 2006, 38: 1577-1582.
[12] Chen Z, Luo X Q, Hu R G, Wu M N, Wu J S, Wei W X. Impact of long-term fertilization on the composition of denitrify communities based on nitrite reductase analyses in a paddy soil. Microb Ecol, 2010, 60: 850-861.
doi: 10.1007/s00248-010-9700-z pmid: 20563573
[13] 陈哲, 陈春兰, 秦红灵, 王霞, 吴敏娜, 魏文学. 化肥对稻田土壤细菌多样性及硝化、反硝化功能菌组成的影响. 生态学报, 2009, 29: 6142-6147.
Chen Z, Chen C L, Qin H L, Wang X, Wu M N, Wei W X. Effect of fertilization on bacterial community, genetic diversity of AmoA and nosZ genes in paddy soil. Acta Ecol Sin, 2009, 29: 6142-6147 (in Chinese with English abstract).
[14] 丁爽, 魏圣钊, 陈真亮, 邵婧, 段逢瑞, 严禹, 段兴武. 中国西南典型森林土壤微生物在不同土壤深度下的变化特征. 应用生态学报, 2023, 34: 614-622.
doi: 10.13287/j.1001-9332.202303.002
Ding S, Wei S Z, Chen Z L, Shao J, Duan F R, Yan Y, Duan X W. Variation characteristics of microorganisms at different soil depths of typical forests in Southwest China. Chin J Appl Ecol, 2023, 34: 614-622 (in Chinese with English abstract).
doi: 10.13287/j.1001-9332.202303.002
[15] 张翰林, 白娜玲, 郑宪清, 李双喜, 张娟琴, 张海韵, 周胜, 孙会峰, 吕卫光. 秸秆还田与施肥方式对稻麦轮作土壤细菌和真菌群落结构与多样性的影响. 中国生态农业学报(中英文), 2021, 29: 531-539.
Zhang H L, Bai N L, Zheng X Q, Li S X, Zhang J Q, Zhang H Y, Zhou S, Sun H F, Lyu W G. Effects of straw returning and fertilization on soil bacterial and fungal community structures and diversities in rice-wheat rotation soil. Chin J Eco-Agric, 2021, 29: 531-539 (in Chinese with English abstract).
[16] 任宏芳, 王璐, 郝兴宇, 张东升, 宗毓铮, 李萍. 缓释肥处理下麦田土壤细菌和真菌群落对气候变化的响应. 中国土壤与肥料, 2022, (10): 50-63.
Ren H F, Wang L, Hao X Y, Zhang D S, Zong Y Z, Li P. Response of soil bacteria and fungi communities in wheat fields to climate change under slow-release fertilizer treatment. Soil Fert Sci China, 2022, (10): 50-63 (in Chinese with English abstract).
[17] 蒋雨洲, 陈顺辉, 李文卿, 刘青丽, 李志宏, 张云贵, 张燕, 唐英琪. 长期定位不同施肥类型对烟田土壤nifH细菌群落结构的影响. 中国烟草学报, 2021, 27(3): 35-45.
Jiang Y Z, Chen S H, Li W Q, Liu Q L, Li Z H, Zhang Y G, Zhang Y, Tang Y Q. Effects of long-term fertilization on nifH bacterial community structure in flue-cured tobacco field. Acta Tabacaria Sin, 2021, 27(3): 35-45 (in Chinese with English abstract).
[18] 唐志伟, 翁颖, 朱夏童, 蔡洪梅, 代雯慈, 王捧娜, 郑宝强, 李金才, 陈翔. 秸秆还田下中国农田土壤微生物生物量碳变化及其影响因素的Meta分析. 生态环境学报, 2023, 32: 1552-1562.
doi: 10.16258/j.cnki.1674-5906.2023.09.002
Tang Z W, Weng Y, Zhu X T, Cai H M, Dai W C, Wang P N, Zheng B Q, Li J C, Chen X. Meta-analysis of soil microbial mass carbon and its influencing factors in farmland in China under straw return. Ecol Environ Sci, 2023, 32: 1552-1562 (in Chinese with English abstract).
[19] 王伟华, 刘毅, 唐海明, 孙志龙, 李宝珍, 葛体达, 吴金水. 长期施肥对稻田土壤微生物量、群落结构和活性的影响. 环境科学, 2018, 39: 430-437.
Wang W H, Liu Y, Tang H M, Sun Z L, Li B Z, Ge T D, Wu J S. Effects of long-term fertilization on soil microbial biomass, community structure and activity in paddy field. Environ Sci, 2018, 39: 430-437 (in Chinese with English abstract).
[20] Jorquera M A, Martínez O A, Marileo L G, Acuña J J, Saggar S, Mora M L. Effect of nitrogen and phosphorus fertilization on the composition of rhizobacterial communities of two Chilean Andisol pastures. World J Microbiol Biotechnol, 2014, 30: 99-107.
[21] Börjesson G, Menichetti L, Kirchmann H, Kätterer T. Soil microbial community structure affected by 53 years of nitrogen fertilisation and different organic amendments. Biol Fert Soils, 2012, 48: 245-257.
[22] Berthrong S T, Buckley D H, Drinkwater L E. Agricultural management and labile carbon additions affect soil microbial community structure and interact with carbon and nitrogen cycling. Microb Ecol, 2013, 66: 158-170.
doi: 10.1007/s00248-013-0225-0 pmid: 23588849
[23] Wei D, Yang Q, Zhang J Z, Wang S, Chen X L, Zhang X L, Li W Q. Bacterial community structure and diversity in a black soil as affected by long-term fertilization. Pedosphere, 2008, 18: 582-592.
[24] 丁建莉, 姜昕, 关大伟, 马鸣超, 赵百锁, 周宝库, 曹凤明, 李力, 李俊. 东北黑土微生物群落对长期施肥及作物的响应. 中国农业科学, 2016, 49: 4408-4418.
doi: 10.3864/j.issn.0578-1752.2016.22.013
Ding J L, Jiang X, Guan D W, Ma M C, Zhao B S, Zhou B K, Cao F M, Li L, Li J. Responses of micro population in black soil of Northeast China to long-term fertilization and crops. Sci Agric Sin, 2016, 49: 4408-4418 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2016.22.013
[25] Dong W Y, Liu E K, Yan C R, Tian J, Zhang H H, Zhang Y Q. Impact of no tillage vs. conventional tillage on the soil bacterial community structure in a winter wheat cropping succession in Northern China. Eur J Soil Biol, 2017, 80: 35-42.
[26] Naether A, Foesel B U, Naegele V, Wüst P K, Weinert J, Bonkowski M, Alt F, Oelmann Y, Polle A, Lohaus G, et al. Environmental factors affect Acidobacterial communities below the subgroup level in grassland and forest soils. Appl Environ Microbiol, 2012, 78: 7398-7406.
[27] 王晓菲, 罗珠珠, 张仁陟, 牛伊宁, 李玲玲, 田建霞, 孙鹏洲, 刘家鹤. 黄土高原苜蓿-粮食作物轮作下土壤细菌群落特征和生态功能预测. 应用生态学报, 2022, 33: 1109-1117.
doi: 10.13287/j.1001-9332.202204.028
Wang X F, Luo Z Z, Zhang R Z, Niu Y N, Li L L, Tian J X, Sun P Z, Liu J H. Soil bacterial community characteristics and ecological function prediction of alfalfa and crop rotation systems in the Loess Plateau, Northwest China. Chin J Appl Ecol, 2022, 33: 1109-1117 (in Chinese with English abstract).
[28] 王娟娟, 朱紫娟, 钱晓晴, 王桂良. 全年稻麦秸秆还田对稻田土壤细菌群落结构的影响. 中国土壤与肥料, 2022, (4): 57-65.
Wang J J, Zhu Z J, Qian X Q, Wang G L. Effects of year-round rice-wheat straw return on soil bacterial community structure in paddy fields. Soil Fert Sci China, 2022, (4): 57-65 (in Chinese with English abstract).
[29] Yu C R, Wang X J, Hu B, Yang C Q, Sui N, Liu R X, Meng Y L, Zhou Z G. Effects of wheat straw incorporation in cotton-wheat double cropping system on nutrient status and growth in cotton. Field Crops Res, 2016, 197: 39-51.
[30] Miao Y C, Niu Y H, Luo R Y, Li Y, Zheng H J, Kuzyakov Y, Chen Z M, Liu D Y, Ding W X. Lower microbial carbon use efficiency reduces cellulose-derived carbon retention in soils amended with compost versus mineral fertilizers. Soil Biol Biochem, 2021, 156: 108-227.
[31] Fan F L, Yin C, Tang Y J, Li Z J, Song A L, Wakelin S A, Zou J, Liang Y C. Probing potential microbial coupling of carbon and nitrogen cycling during decomposition of maize residue by 13C-DNA-SIP. Soil Biol Biochem, 2014, 70: 12-21.
[32] Nsabimana D, Haynes R J, Wallis F M. Size, activity and catabolic diversity of the soil microbial biomass as affected by land use. Appl Soil Ecol, 2004, 26: 81-92.
[33] Spedding T A, Hamel C, Mehuys G R, Madramootoo C A. Soil microbial dynamics in maize-growing soil under different tillage and residue management systems. Soil Biol Biochem, 2004, 36: 499-512.
[34] Yang J K, Zhang J J, Yu H Y, Cheng J W, Miao L H. Community composition and cellulase activity of cellulolytic bacteria from forest soils planted with broad-leaved deciduous and evergreen trees. Appl Microbiol Biotechnol, 2014, 98: 1449-1458.
[35] 尹春江, 刘茂兰, 钟羡芳, 司友涛, 马红亮, 高人, 尹云锋. 强还原处理和施用有机肥对设施蔬菜地土壤微生物群落稳定性的影响. 应用生态学报, 2024, 35: 1293-1300.
doi: 10.13287/j.1001-9332.202404.031
Yin C J, Liu M L, Zhong X F, Si Y T, Ma H L, Gao R, Yin Y F. Effects of reductive soil disinfestation and organic fertilizer application on microbial community stability in a facility vegetable soil. Chin J Appl Ecol, 2024, 35: 1293-1300 (in Chinese with English abstract).
doi: 10.13287/j.1001-9332.202404.031
[36] 王宇峰, 孟会生, 李廷亮, 谢钧宇, 栗丽, 李丽娜, 黄晓磊. 培肥措施对复垦土壤微生物碳氮代谢功能多样性的影响. 农业工程学报, 2020, 36(24): 81-90.
Wang Y F, Meng H S, Li T L, Xie J Y, Li L, Li L N, Huang X L. Effects of fertilization regime on the functional diversity of microbial carbon and nitrogen metabolism in reclaimed soil. Trans CSAE, 2020, 36(24): 81-90 (in Chinese with English abstract).
[37] 马龙, 高伟, 栾好安, 唐继伟, 李明悦, 黄绍文. 基于宏基因组学方法分析施肥模式对设施菜田土壤微生物群落的影响. 植物营养与肥料学报, 2021, 27: 403-416.
Ma L, Gao W, Luan H A, Tang J W, Li M Y, Huang S W. Soil microbial community characteristics in greenhouse vegetable production under different fertilization patterns based on metagenomic analysis. J Plant Nutr Fert, 2021, 27: 403-416 (in Chinese with English abstract).
[38] 马南, 安婷婷, 张久明, 汪景宽. 添加玉米秸秆和根茬对不同肥力黑土微生物残体碳氮的影响. 中国农业科学, 2023, 56: 686-696.
doi: 10.3864/j.issn.0578-1752.2023.04.008
Ma N, An T T, Zhang J M, Wang J K. Effects of maize shoot and root residues added on microbial residue carbon and nitrogen in different fertility levels of black soil. Sci Agric Sin, 2023, 56: 686-696 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2023.04.008
[39] Ning Y C, Wang X, Yang Y N, Cao X, Wu Y L, Zou D T, Zhou D X. Studying the effect of straw returning on the interspecific symbiosis of soil microbes based on carbon source utilization. Agriculture, 2022, 12: 1053.
[40] Sharma V, Vashishtha A, Jos A L M, Khosla A, Basu N, Yadav R, Bhatt A, Gulani A, Singh P, Lakhera S, et al. Phylogenomics of the Phylum proteobacteria: resolving the complex relationships. Curr Microbiol, 2022, 79: 224.
doi: 10.1007/s00284-022-02910-9 pmid: 35704242
[41] 王光华, 刘俊杰, 于镇华, 王新珍, 金剑, 刘晓冰. 土壤酸杆菌门细菌生态学研究进展. 生物技术通报, 2016, 32(2): 14-20.
doi: 10.13560/j.cnki.biotech.bull.1985.2016.02.002
Wang G H, Liu J J, Yu Z H, Wang X Z, Jin J, Liu X B. Research progress of Acidobacteria ecology in soils. Biotechnol Bull, 2016, 32(2): 14-20 (in Chinese with English abstract).
[42] Hedlund B P, Gosink J J, Staley J T. Verrucomicrobia div. nov., a new division of the bacteria containing three new species of Prosthecobacter. Antonie Van Leeuwenhoek, 1997, 72: 29-38.
[43] Yadav A N. Beneficial plant-microbe interactions for agricultural sustainability. J App Biol Biotech, 2022, 9: 1-4.
[44] Tran P, Ramachandran A, Khawasik O, Beisner B E, Rautio M, Huot Y, Walsh D A. Microbial life under ice: Metagenome diversity and in situ activity of Verrucomicrobia in seasonally ice-covered Lakes. Environ Microbiol, 2018, 20: 2568-2584.
[1] QIN Jin-Hua, HONG Wei-Yuan, FENG Xiang-Qian, LI Zi-Qiu, ZHOU Zi-Yu, WANG Ai-Dong, LI Rui-Jie, WANG Dan-Ying, ZHANG Yun-Bo, CHEN Song. Analysis of agronomic and physiological indicators of rice yield and grain quality under nitrogen fertilization management [J]. Acta Agronomica Sinica, 2025, 51(2): 485-502.
[2] XU Yi-Fan, XU Cai-Long, LI Rui-Dong, WU Zong-Sheng, HUA Jian-Xin, YANG Lin, SONG Wen-Wen, WU Cun-Xiang. Deep side fertilization improved soybean yield by optimizing leaf function and nitrogen accumulation [J]. Acta Agronomica Sinica, 2024, 50(9): 2335-2346.
[3] LIANG Jin-Yu, YIN Jia-De, HOU Hui-Zhi, XUE Yun-Gui, GUO Hong-Juan, WANG Shuo, ZHAO Qi-Zhi, ZHANG Xu-Cheng, XIE Jun-Hong. Effects of deep fertilization on ecological stoichiometric characteristics and photosynthetic carbon assimilation of flag leaves of spring wheat under drought conditions [J]. Acta Agronomica Sinica, 2024, 50(8): 2078-2090.
[4] GUO Song, GUO Hui-Ting, ZHANG Yu-Liang, QIAN Zi-Hui, WANG Zi-Jun, LU Jia-Ming, WANG Yuan, ZHAO Can, WANG Wei-Ling, ZHANG Hong-Cheng, YANG Feng-Ping, HUO Zhong-Yang. Effects of side deep placement of controlled release nitrogen management on rice yield, NH3, and greenhouse gas emissions [J]. Acta Agronomica Sinica, 2024, 50(6): 1525-1539.
[5] JIANG Da-Ren, XIONG Ruo-Yu, WU Jia-Qing, MAO Fu-Qin, FENG Jun-Jie, TAO Lei, XIE Xiao-Bing, PAN Xiao-Hua, ZENG Yong-Jun, WANG Ya-Liang, ZENG Yan-Hua. Effects of side-deep fertilization on yield formation and nitrogen absorption of high-quality early indica rice under precision sowing in line and machine planting [J]. Acta Agronomica Sinica, 2024, 50(12): 3096-3106.
[6] ZHAO Wei, HU Xiao-Na, ZHENG Yan, LIANG Na, ZHENG Bin, WANG Xiao-Xiao, WANG Jiang-Tao, LIU Ling, FU Guo-Zhan, SHI Zhao-Yong, JIAO Nian-Yuan. Characteristics of AMF community in maize and peanut rhizosphere soil and its response to phosphate application [J]. Acta Agronomica Sinica, 2024, 50(11): 2896-2907.
[7] LU Jian-Xiang, GAO Qian-Wen, GAO Zhi-Qiang, YANG Hui-Bing, WEN Shuang-Ya, SHI Nan, HU Wen-Rui, JIN Yu-Hao, CHEN Long, LIU Yun, CAO Zheng-Deng-Yuan. Effect of high-density planting and fertilizer reduction on yield and growth and development of indica hybrid rice [J]. Acta Agronomica Sinica, 2024, 50(10): 2586-2598.
[8] ZHANG Chen-Hui, ZHANG Yan, LI Guo-Hui, YANG Zi-Jun, ZHA Ying-Ying, ZHOU Chi-Yan, XU Ke, HUO Zhong-Yang, DAI Qi-Gen, GUO Bao-Wei. Root morphology and physiological characteristics for high yield formation under side-deep fertilization in rice [J]. Acta Agronomica Sinica, 2023, 49(4): 1039-1051.
[9] WANG Jin-Song, BAI Ge, ZHANG Yan-Hui, SHEN Tian-Yu, DONG Er-Wei, JIAO Xiao-Yan. Impacts of long-term fertilization on post-anthesis leaf senescence, antioxidant enzyme activities and yield in sorghum [J]. Acta Agronomica Sinica, 2023, 49(3): 845-855.
[10] XIAO Jian, CHEN Si-Yu, SUN Yan, YANG Shang-Dong, TAN Hong-Wei. Characteristics of endophytic bacterial community structure in roots of sugarcane under different fertilizer applications [J]. Acta Agronomica Sinica, 2022, 48(5): 1222-1234.
[11] SUN Qi-Qi, ZHENG Yong-Mei, YU Tian-Yi, WU Yue, YANG Ji-Shun, WU Zheng-Feng, WU Ju-Xiang, LI Shang-Xia. Responses of soil diazotrophic diversity and community composition of nodulating and non-nodulating peanuts (Arachis hypogaea L.) to nitrogen fertilization [J]. Acta Agronomica Sinica, 2022, 48(10): 2575-2587.
[12] LI Ying-Hao, WANG Qi, ZHAO Bao-Ping, LIU Yan-Di, MI Jun-Zhen, WU Jun-Ying, LIU Jing-Hui. Synergistic effect of moisture and foliar-applied humic acid on oat grain yield and β-glucan content [J]. Acta Agronomica Sinica, 2022, 48(10): 2663-2670.
[13] FANG Yan-Jie, ZHANG Xu-Cheng, HOU Hui-Zhi, YU Xian-Feng, WANG Hong-Li, MA Yi-Fan, ZHANG Guo-Ping, LEI Kang-Ning. Effects of whole soil-plastic mulching system and fertilization rates on water consumption characteristics and yield of tartary buckwheat in arid land [J]. Acta Agronomica Sinica, 2021, 47(6): 1149-1161.
[14] LIU Yan-Lan, GUO Xian-Shi, ZHANG Xu-Cheng, MA Ming-Sheng, WANG Hong-Kang. Effects of planting density and fertilization on dry matter accumulation, yield and water-fertilizer utilization of dryland potato [J]. Acta Agronomica Sinica, 2021, 47(2): 320-331.
[15] HUANG Heng, JIANG Heng-Xin, LIU Guang-Ming, YUAN Jia-Qi, WANG Yuan, ZHAO Can, WANG Wei-Ling, HUO Zhong-Yang, XU Ke, DAI Qi-Gen, ZHANG Hong-Cheng, LI De-Jian, LIU Guo-Lin. Effects of side deep placement of nitrogen on rice yield and nitrogen use efficiency [J]. Acta Agronomica Sinica, 2021, 47(11): 2232-2249.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!