欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (11): 2684-2698.doi: 10.3724/SP.J.1006.2024.41022

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水旱条件下小麦持绿相关性状QTL定位

陈晨1(), 程宇坤1, 王伟1,2, 任毅1, 张海燕1, 陈慧波1, 耿洪伟1,*()   

  1. 1新疆农业大学农学院 / 新疆农业大学优质专用麦类作物工程技术研究中心, 新疆乌鲁木齐 830052
    2安阳工程学院计算机科学与信息工程系, 河南安阳 455000
  • 收稿日期:2024-03-14 接受日期:2024-06-20 出版日期:2024-11-12 网络出版日期:2024-07-18
  • 通讯作者: *耿洪伟, E-mail: hw-geng@163.com
  • 作者简介:E-mail: chenchen20210305@163.com
  • 基金资助:
    新疆自治区重点研发任务专项(2022B02001-3);新疆现代农业产业技术体系建设项目(小麦, XJARS-01)

QTL mapping of stay-green-related traits in wheat under drought condition

CHEN Chen1(), CHENG Yu-Kun1, WANG Wei1,2, REN Yi1, ZHANG Hai-Yan1, CHEN Hui-Bo1, GENG Hong-Wei1,*()   

  1. 1College of Agronomy, Xinjiang Agricultural University / Special High Quality Triticeae Crops Engineering and Technology Research Center, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
    2Department of Computer Science and Information Engineering, Anyang Institute of Technology, Anyang 455000, Henan, China
  • Received:2024-03-14 Accepted:2024-06-20 Published:2024-11-12 Published online:2024-07-18
  • Contact: *E-mail: hw-geng@163.com
  • Supported by:
    Special Project of Key Research and Development Task of Xinjiang Autonomous Region(2022B02001-3);Xinjiang Agriculture Research System(Wheat, XJARS-01)

摘要:

干旱是影响小麦生产中最重要的非生物胁迫。延长叶片持绿周期, 进而增加光合时间, 提高光合效率, 对小麦在旱胁迫下保证有机物积累, 最终达到小麦产量的稳定具有重要的意义。了解小麦旗叶持绿性保持的发育和遗传特征, 并探索与小麦持绿基因密切相关且不受环境影响的稳定的分子标记, 应用于育种可大大缩短抗旱育种周期。本研究以扬麦16和中麦895衍生的174个家系的DH群体为试验材料, 通过设置正常滴灌(NI)和干旱胁迫(DS)处理, 对2年2个水分处理下花后10 d、14 d、18 d、22 d、26 d和30 d旗叶绿色叶面积百分率(GLA)及叶绿素相对含量(SPAD值)进行表型测定, 运用Gompertz模型模拟出GLA (%)变化趋势。将达到最大衰老速度的时间(TMRS)、绿色叶面积持续期(GLAD)、平均衰老速率(ARS)、旗叶快速衰老开始的时间(T1)、旗叶快速衰老结束的时间(T2)和旗叶动态SPAD值等11个持绿相关性状进行QTL定位。 结果表明,水旱条件下, DH群体和亲本不同日龄下的GLA, 衰老特征参数和旗叶动态SPAD值均存在超亲分离现象, 并表现出一定差异。各家系和亲本不同日龄下的GLA均呈缓慢-快速-缓慢的动态下降趋势, 快速衰老主要集中在18 d、22 d和26 d。除ARS和GLA-10D呈负相关, 其余性状之间均呈现正相关。各性状遗传力范围在0.50~0.81之间。连锁分析在2个及以上环境中共鉴定到27个与小麦持绿相关的稳定位点, 其中11个与小麦衰老特征参数相关, 16个与旗叶动态SPAD值相关, 分布在1A、1B、4B、4D、5D、7B和7D染色体上, 分别解释表型变异3.86%~14.11%和2.99%~17.45%。在4B、4D和7B染色体上有1个调控T1和5个调控SPAD值的QTL在3个环境中被重复检测到, 分别解释8.97%~14.11%和6.85%~17.45%的表型变异。QTL聚合效应分析发现, 含有Rht-D1b和AA基因型的位点对SPAD-10D具有显著的增效作用和累加效应, 含有GG和TT基因型的位点对SPAD-18D具有显著的增效作用和累加效应。在4B、4D、7B和7D染色体上发现了4个效应明显的QTL簇, 位于4D染色体的QTL簇中存在不受水分环境影响的区段(18.80~28.58 Mb), 该区段内包含Rht-D1基因, 调控SPAD-0D和SPAD-10D的位点可能受到该基因的多效应影响。候选基因分析发现TraesCS4D01G054000TraesCS1B01G434300TraesCS7B01G010200等8个影响持绿相关性状的候选基因。以上研究结果为小麦持绿性分子标记辅助育种提供了理论依据。

关键词: 小麦, 持绿相关性状, QTL定位, 聚合效应, 候选基因

Abstract:

Drought is the primary abiotic stress that significantly affects wheat production. Extending the duration of leaf greenness, thereby increasing photosynthetic time and efficiency, is crucial for wheat in ensuring organic matter accumulation under drought stress and ultimately stabilizing wheat yield. Understanding the developmental and genetic characteristics of flag leaf greenness retention in wheat and identifying stable molecular markers closely associated with greenness-related genes, independent of environmental influences, can significantly accelerate the breeding process for drought resistance. In this study, we utilized a DH population consisting of 174 lines derived from Yangmai 16 and Zhongmai 895 as experimental materials. We conducted phenotypic evaluations of the percentage of green leaf area (GLA) and relative chlorophyll content (SPAD value) in flag leaves at 10 d, 14 d, 18 d, 22 d, 26 d, and 30 d post-flowering under two moisture environments: normal drip irrigation (NI) and drought stress (DS). We simulated the change in GLA using the Gompertz model and performed QTL mapping for eleven greenness-related traits, including time to maximum senescence rate (TMRS), green leaf area duration (GLAD), average senescence rate (ARS), time to the beginning of rapid senescence (T1), time to the end of rapid senescence (T2), and the dynamic SPAD value of the flag leaf. The results revealed a phenomenon of transgressive segregation in GLA, aging characteristic parameters, and dynamic SPAD values of the DH population and parents under both well-watered and drought conditions, demonstrating certain differences. A consistent trend of slow-rapid-slow decline in GLA was observed at different time points across all families and parents, with rapid senescence primarily occurring at 18 d, 22 d, and 26 d Except for the negative correlation between ARS and GLA-10D, positive correlations were observed among all other traits. The heritability of each trait ranged from 0.50 to 0.81. Linkage analysis identified a total of 27 stable loci associated with greenness retention in wheat across two or more environments. Among these, 11 loci were associated with wheat senescence characterization trait parameters, and 16 loci were associated with dynamic SPAD values of the flag leaf. These loci were distributed on chromosomes 1A, 1B, 4B, 4D, 5D, 7B, and 7D, explaining 3.86%-14.11% and 2.99%-17.45% of the phenotypic variance, respectively. One QTL regulating T1 and five SPAD values on chromosomes 4B, 4D, and 7B were consistently detected across the three environments, explaining 8.97%-14.11% and 6.85%-17.45% of the phenotypic variance, respectively. The results of QTL co-localization effect analysis revealed that loci containing Rht-D1b and AA genotypes exhibited significant enhancement and cumulative effects on SPAD-10D, while loci containing GG and TT genotypes showed significant enhancement and cumulative effects on SPAD-18D. Four QTL clusters with significant effects were identified on chromosomes 4B, 4D, 7B, and 7D. Notably, the segment of the QTL cluster on chromosome 4D (18.80-28.58 Mb) remained unaffected by water availability and contained the Rht-D1 gene. The loci regulating SPAD-0D and SPAD-10D might be influenced by the multiplicative effect of this gene. Candidate gene analysis identified eight candidate genes, such as TraesCS4D01G054000, TraesCS1B01G434300, and TraesCS7B01G010200, which are associated with greenness retention. These findings provide a theoretical foundation for molecular marker-assisted breeding aimed at improving greenness retention in wheat.

Key words: wheat, stay-green-related traits, QTL localization, convergent effect, candidate genes

附表1

DH群体及亲本旗叶绿色叶面积比例统计分析"

性状
Trait
环境
Environment
处理
Treatment
亲本 Parents DH家系 DH Lines
扬麦16
Yangmai 16
中麦895
Zhongmai 895
最小值
Min.
最大值
Max.
平均值
Mean
标准差
SD
变异系数
CV
偏度
Skew.
峰度
Kurt.
GLA-10D E1 NI 10.00 10.00 9.10 10.00 9.94* 0.17 0.02 ‒2.92 8.46
DS 9.80 9.80 7.70 10.00 9.72 0.47 0.05 ‒2.45 6.13
E2 NI 10.00 10.00 9.10 10.00 9.98 0.09 0.01 ‒6.80 54.47
DS 9.80 10.00 8.80 10.00 9.97 0.14 0.01 ‒6.21 43.19
BLUE NI 10.00 10.00 9.20 10.00 9.96* 0.11 0.01 ‒3.68 17.89
DS 9.80 9.90 8.50 10.04 9.85 0.26 0.03 ‒2.55 7.19
GLA-14D E1 NI 9.60 10.00* 7.20 10.00 9.51* 0.58 0.06 ‒1.82 3.23
DS 7.60 8.80 4.00 10.00 8.63 1.30 0.15 ‒1.50 2.17
E2 NI 9.90 10.00 8.70 10.00 9.94 0.18 0.02 ‒4.68 23.94
DS 9.70 10.00* 8.30 10.00 9.93 0.22 0.02 ‒4.51 24.31
BLUE NI 9.75 10.00* 8.60 10.00 9.73* 0.31 0.03 ‒1.74 2.76
DS 8.65 9.40* 6.95 10.09 9.28 0.67 0.07 ‒1.47 2.01
GLA-18D E1 NI 6.30 7.90* 3.00 10.00 7.80* 1.58 0.20 ‒0.87 0.16
DS 2.90 4.60* 0.50 9.20 4.55 2.26 0.50 0.11 ‒0.95
E2 NI 9.40 10.00* 6.60 10.00 9.72* 0.49 0.05 ‒3.35 14.61
DS 8.80 10.00* 7.50 10.00 9.61 0.55 0.06 ‒1.95 3.78
BLUE NI 7.85 8.95 6.35 10.00 8.76* 0.82 0.09 ‒0.86 0.08
DS 5.85 7.30 4.30 9.60 7.08 1.18 0.17 0.00 ‒0.78
GLA-22D E1 NI 2.80 4.00* 0.50 9.60 4.42* 2.14 0.49 0.40 ‒0.83
DS 0.90 1.50* 0.00 7.20 2.21 1.67 0.75 0.58 ‒0.55
E2 NI 8.50 10.00* 6.10 10.00 9.08* 0.86 0.09 ‒1.06 0.84
DS 7.80 9.70* 4.00 9.90 7.83 1.31 0.17 ‒0.53 ‒0.44
BLUE NI 5.65 7.00 3.80 9.47 6.75* 1.19 0.18 0.14 ‒0.75
DS 4.35 5.60 2.00 8.30 5.02 1.19 0.24 0.01 ‒0.35
GLA-26D E1 NI 0.50 1.70* 0.00 7.60 1.93* 1.44 0.75 1.27 2.04
DS 0.00 0.90* 0.00 2.80 0.41 0.62 1.54 1.80 2.94
E2 NI 5.70 6.80* 1.50 8.80 5.56* 1.00 0.18 0.25 1.65
DS 4.30 5.50* 1.00 7.40 3.54 1.71 0.48 0.09 ‒0.97
BLUE NI 3.10 4.25 1.80 7.07 3.75* 0.99 0.26 0.73 0.52
DS 2.15 3.20 0.50 4.75 1.97 1.00 0.51 0.23 ‒0.69
GLA-30D E2 NI 1.10 2.60* 0.00 4.80 1.64* 1.08 0.66 0.87 0.45
DS 0.90 1.20 0.00 4.60 0.82 0.64 0.78 1.48 6.11

图1

2个环境下的2种水分环境中双亲及DH群体的曲线拟合结果 E1: 2021-2022玛纳斯; E2: 2022-2023三坪; 蓝线: 正常滴灌条件下预测值; 红线: 干旱胁迫条件下预测值; 蓝点: 正常滴灌条件下实测值; 红点: 干旱胁迫条件下实测值。"

表1

DH群体及亲本衰老参数值统计分析"

性状
Trait
环境
Environ-
ment
处理
Treatment
亲本 Parents DH家系 DH line
扬麦16
Yangmai 16
中麦895
Zhongmai 895
最小值
Min.
最大值
Max.
平均值
Mean
标准差
SD
变异系数
CV
偏度
Skew.
峰度
Kurt.
TMRS (d) E1 NI 20.65 22.50* 13.93 31.27 22.71* 2.81 0.12 0.22 0.94
DS 16.84 18.82* 8.71 25.19 18.95 2.64 0.14 -0.42 0.74
E2 NI 27.69 29.02* 24.08 30.81 27.83* 1.16 0.04 0.37 0.36
DS 26.03 27.61* 22.29 30.92 25.93 1.55 0.06 -0.05 -0.29
BLUE NI 24.17 25.76 20.08 30.10 25.27* 1.67 0.07 0.28 0.48
DS 21.43 23.21 16.86 27.35 22.45 1.76 0.08 -0.22 0.11
GLAD (d) E1 NI 26.95 29.39* 19.74 40.53 28.76* 3.60 0.13 0.87 1.37
DS 23.38 25.33* 16.39 31.99 23.95 3.15 0.13 0.02 -0.80
E2 NI 32.28 33.39 27.28 39.02 32.32* 2.01 0.06 0.29 0.63
DS 31.14 31.67 25.20 37.11 30.07 2.16 0.07 0.10 -0.14
BLUE NI 29.61 31.39 25.67 38.44 30.55* 2.28 0.07 0.59 0.78
DS 27.26 28.50 21.33 33.00 27.01 2.09 0.08 -0.02 -0.29
ARS (% d-1) E1 NI -0.41 -0.38* -0.67 -0.27 -0.38* 0.06 0.15 -1.35 4.70
DS -0.52 -0.45* -1.30 -0.32 -0.47 0.11 0.24 -3.99 22.73
E2 NI -0.31 -0.31 -0.37 -0.26 -0.32* 0.02 0.06 -0.13 0.12
DS -0.32 -0.32 -0.41 -0.27 -0.34 0.03 0.07 -0.06 0.10
BLUE NI -0.36 -0.34 -0.52 -0.28 -0.35* 0.03 0.09 -1.08 4.13
DS -0.42 -0.39 -0.75 -0.32 -0.41 0.06 0.14 -3.16 15.50
T1 (d) E1 NI 18.93 20.61* 10.08 29.36 21.06* 2.99 0.14 -0.23 1.22
DS 15.05 17.04* 4.59 23.91 17.58 2.84 0.16 -0.85 2.20
E2 NI 26.43 27.82* 22.97 29.75 26.60* 1.06 0.04 0.35 1.25
DS 24.62 26.50* 20.94 29.23 24.79 1.49 0.06 -0.09 -0.39
BLUE NI 22.68 24.22 18.01 28.85 23.82* 1.70 0.07 0.01 0.57
DS 19.84 21.77 15.30 25.82 21.20 1.79 0.08 -0.40 0.43
T2 (d) E1 NI 22.38 24.39* 17.78 33.18 24.37* 2.81 0.12 0.59 0.94
DS 18.63 20.60* 12.82 26.46 20.32 2.60 0.13 -0.10 -0.31
E2 NI 28.95 30.22* 25.20 32.32 29.06* 1.33 0.05 0.33 -0.05
DS 27.43 28.72* 23.43 32.61 27.06 1.66 0.06 -0.01 -0.27
BLUE NI 25.66 27.30 22.15 32.39 26.71* 1.74 0.07 0.46 0.47
DS 23.03 24.66 18.41 28.90 23.70 1.78 0.08 -0.09 -0.09

附表2

DH群体及亲本SPAD值统计分析"

性状
Trait
环境
Environment
处理
Treatment
亲本 Parents DH家系 DH Lines
扬麦16
Yangmai 16
中麦895
Zhongmai 895
最小值
Min.
最大值
Max.
平均值
Mean
标准差
SD
变异系数
CV
偏度
Skew.
峰度
Kurt.
SPAD-0D E1 NI 59.21 59.97 54.92 67.10 61.43 2.45 0.04 ‒0.45 0.26
DS 58.49 62.09* 54.99 66.86 61.19 2.31 0.04 ‒0.04 ‒0.05
E2 NI 59.66 60.42 53.36 64.38 59.33* 1.96 0.03 ‒0.09 0.32
DS 57.20 58.39 51.62 63.60 58.86 2.17 0.04 ‒0.58 0.51
BLUE NI 59.43 60.19 54.92 63.99 60.39 1.91 0.03 ‒0.60 0.20
DS 57.85 60.24* 53.30 63.94 60.02 1.94 0.03 ‒0.43 0.09
SPAD-10D E1 NI 59.63 59.49 54.69 68.00 62.48 2.63 0.04 ‒0.33 ‒0.11
DS 61.59 67.49* 55.17 70.06 62.72 2.76 0.04 0.03 ‒0.09
E2 NI 60.31 63.15* 55.60 65.71 60.89* 2.18 0.04 0.03 ‒0.49
DS 58.14 62.35* 55.70 65.29 60.26 2.00 0.03 ‒0.05 ‒0.37
BLUE NI 59.97 61.32 56.79 65.69 61.69* 2.04 0.03 ‒0.10 ‒0.78
DS 59.87 64.92* 56.73 67.52 61.48 2.02 0.03 0.19 0.06
SPAD-14D E1 NI 57.24 62.31* 52.54 70.12 61.76* 3.27 0.05 ‒0.18 0.11
DS 57.78 58.75 48.51 67.22 59.28 3.88 0.07 ‒0.39 ‒0.10
E2 NI 59.64 62.21 54.21 65.83 60.26 2.46 0.04 ‒0.19 ‒0.37
DS 59.90 63.29* 52.85 67.15 60.36 2.91 0.05 ‒0.26 ‒0.59
BLUE NI 58.44 62.26* 54.96 67.06 61.01 2.54 0.04 ‒0.14 ‒0.37
DS 58.84 61.02 51.90 65.19 59.82 2.79 0.05 ‒0.34 ‒0.47
SPAD-18D E1 NI 48.60 57.59* 40.34 67.61 56.29* 5.04 0.09 ‒0.59 0.41
DS 28.86 43.55* 7.68 65.41 48.49 9.49 0.20 ‒0.81 1.33
E2 NI 57.90 59.93* 50.93 65.89 59.03* 2.63 0.04 ‒0.10 ‒0.35
DS 56.68 60.49 50.61 64.82 58.18 2.55 0.04 ‒0.27 ‒0.22
BLUE NI 53.25 58.76* 48.66 64.23 57.68* 3.34 0.06 ‒0.38 ‒0.34
DS 42.77 52.02 35.59 63.45 53.38 5.22 0.10 ‒0.54 0.20
SPAD-22D E1 NI 32.36 43.49* 16.52 65.24 44.34* 9.65 0.22 ‒0.43 ‒0.09
DS 8.26 15.36* 4.30 54.44 25.04 11.43 0.46 0.26 ‒0.75
E2 NI 49.19 54.03* 37.76 63.07 53.53* 4.82 0.09 ‒0.66 0.37
DS 38.04 52.33* 11.29 61.09 45.88 11.88 0.26 ‒0.98 0.38
BLUE NI 40.77 48.76 30.56 62.94 48.97* 6.26 0.13 ‒0.39 ‒0.07
DS 23.15 33.85 9.40 54.56 35.46 9.43 0.27 ‒0.34 ‒0.11
SPAD-26D E1 NI 6.45 11.92* 5.52 47.54 16.27* 7.63 0.47 1.36 3.13
DS 3.84 5.38* 2.97 25.72 8.30 3.39 0.41 1.57 4.09
E2 NI 33.14 43.16* 17.11 57.05 33.86* 8.58 0.25 0.32 ‒0.25
DS 27.06 35.05* 6.24 56.54 18.99 13.07 0.69 1.15 0.27
BLUE NI 19.80 27.54 12.74 48.81 25.10* 6.55 0.26 0.66 1.02
DS 15.45 20.22 3.12 35.17 13.63 7.21 0.53 1.12 0.33
SPAD-30D E2 NI 6.20 11.81* 3.27 44.51 11.29* 6.44 0.57 1.94 5.22
DS 4.27 8.09 1.90 31.35 7.61 3.95 0.52 3.10 14.24

图2

不同水分环境中小麦持绿相关性状相关性分析 *表示P < 0.05水平差异显著; **表示P < 0.01水平差异显著; ***表示P < 0.001水平差异显著; 左下角为正常滴灌, 右上角为干旱胁迫。"

附表3

持绿相关性状方差分析及遗传力"

性状
Trait
均方值Mean Square
基因型
Genotype (G)
环境
Environment (E)
G×E互作
G×E
H²
%GLA-10D 0.22*** 5.07*** 0.11*** 0.60
%GLA-14D 1.56*** 131.19*** 0.86*** 0.60
%GLA-18D 6.49*** 2017.33*** 3.15*** 0.60
%GLA-22D 8.65*** 3441.3*** 3.51*** 0.66
%GLA-26D 5.39*** 1698.58*** 2.36*** 0.64
%GLA-30D 2.04*** 115.07*** 1.09*** 0.57
SPAD-0D 25.05*** 575.43*** 4.81 0.81
SPAD-10D 26.64*** 494.54*** 6.52*** 0.78
SPAD-14D 47.01*** 353.41*** 10.88*** 0.79
SPAD-18D 126.52*** 7855.07*** 40.73*** 0.74
SPAD-22D 372.19*** 51022.18*** 129.11*** 0.73
SPAD-26D 266.73*** 39912.29*** 116.02*** 0.68
SPAD-30D 62.44*** 2345.09*** 50.92*** 0.50
TMRS 18.13*** 5199.24*** 5.87*** 0.72
GLAD 24.98*** 4316.17*** 12.16*** 0.57
ARS 0.00*** 1.58*** 0.01*** 0.56
T1 18.79*** 5521.38*** 6.65*** 0.69
T2 18.56*** 4912.08*** 6.16*** 0.71

表2

不同水分环境中衰老特征参数和SPAD值稳定QTL位点"

位点
QTL
环境
Environment
处理
Treatment
左标记
Left marker
右标记
Right marker
置信区间
Confidence interval (cM)
位置
Position (Mb)
LOD值
LOD value
表型贡献率
PVE (%)
加性效应
Additive effect
QTMRS.xjau-4B E1/BLUE NI AX-110194463 AX-111651924 120.5‒122.0 7.21‒19.03 4.72‒6.06 10.34‒11.46 0.53‒1.04
QTMRS.xjau-5D E1/BLUE NI AX-111162962 AX-110717870 163.5‒168.5 459.07‒465.11 3.68‒4.28 7.26‒7.68 0.46‒0.83
QTMRS.xjau-4D E2/BLUE DS AX-108944764 AX-94558069 52.5‒53.5 15.91‒16.59 7.35‒8.85 11.46‒11.93 ‒0.65‒-0.59
QTMRS.xjau-7D E2/BLUE DS AX-109167420 AX-111918348 109.5‒112.5 72.30‒77.23 3.17‒3.62 3.86‒5.31 0.37‒0.41
QGLAD.xjau-4D E2/BLUE DS AX-108944764 Rht-D1 52.5‒55.5 15.91‒18.80 6.39‒10.61 6.97‒10.72 ‒0.90‒-0.72
QT1.xjau-4B E1/BLUE NI AX-86170717 AX-111651924 120.5‒122.0 7.21‒22.87 5.01‒6.11 10.13‒11.68 0.55‒1.10
QT1.xjau-5D E1/BLUE NI AX-111162962 AX-110035093 161.5‒168.5 459.07‒464.13 4.75‒4.97 8.16‒9.32 0.53‒0.92
QT1.xjau-4D E1/E2/BLUE DS AX-95659047 AX-94558069 49.5‒53.5 12.77‒16.59 7.47‒9.55 8.97‒14.11 -0.99‒-0.55
QT1.xjau-7D E2/BLUE DS AX-109167420 AX-111918348 109.5‒112.5 72.30‒77.23 5.01‒5.51 6.56‒7.00 0.47‒0.52
QT2.xjau-4D E2/BLUE DS AX-108944764 AX-94558069 52.5‒53.5 15.91‒16.59 9.38‒9.41 6.34‒12.58 -0.72‒-0.66
QT2.xjau-7B E1/BLUE DS AX-111478329 AX-108883282 1.5‒2.5 1.21‒4.47 3.11‒5.80 5.94‒7.74 -0.65‒-0.56
QSPAD-0D.xjau-4D.1 E2/BLUE NI Rht-D1 AX-109445215 56.5‒60.5 18.80‒28.58 4.24‒5.10 3.64‒11.65 -0.73‒-0.59
QSPAD-0D.xjau-4D.2 E2/BLUE DS AX-89421921 Rht-D1 54.5‒55.5 18.80‒19.29 5.35‒7.80 9.37‒12.20 -0.90‒-0.63
QSPAD-10D.xjau-4D.1 E1/BLUE NI AX-89421921 Rht-D1 54.5‒55.5 18.80‒19.29 6.15‒10.69 9.06‒14.86 -0.95‒-0.91
QSPAD-10D.xjau-1A E1/BLUE DS AX-94629887 AX-109406391 0.0‒0.5 8.64‒20.09 4.30‒5.82 4.86‒8.37 0.56‒0.94
QSPAD-10D.xjau-4B E1/E2/BLUE DS AX-95685381 AX-94912823 43.5‒46.5 171.62‒172.72 5.59‒10.27 8.79‒14.06 0.86‒0.89
QSPAD-10D.xjau-4D.2 E1/BLUE DS AX-89421921 Rht-D1 54.5‒55.5 18.80‒19.29 7.13‒13.05 10.72‒17.18 -0.98‒-0.98
QSPAD-14D.xjau-4B E2/BLUE NI AX-95685381 AX-108888649 43.5‒44.5 171.62‒263.38 8.39‒11.51 12.81‒17.04 1.22‒1.39
QSPAD-14D.xjau-4D E2/BLUE NI AX-111071805 AX-111662392 61.5‒63.5 27.15‒33.06 6.03‒10.24 9.64‒15.73 -1.12‒-0.80
QSPAD-18D.xjau-4B E1/E2/BLUE NI AX-95685381 AX-108888649 43.5‒44.5 171.62‒263.38 6.27‒8.18 9.75‒13.49 1.13‒1.69
QSPAD-18D.xjau-4D E1/E2/BLUE NI AX-95659047 AX-108944764 47.5‒52.5 12.77‒15.91 6.75‒13.27 10.92‒17.45 -2.18‒-1.01
QSPAD-18D.xjau-7B E1/BLUE DS AX-111581943 AX-110629026 0.0‒1.5 6.07‒7.00 3.33‒4.66 2.99‒7.05 ‒2.36‒‒0.90
QSPAD-22D.xjau-4D E1/E2/BLUE DS AX-108944764 AX-109478820 52.5‒57.5 15.91‒30.66 5.26‒9.05 7.21‒12.81 -4.45‒-3.75
QSPAD-22D.xjau-7D E2/BLUE DS AX-110941147 AX-111918348 111.5‒112.5 76.62‒77.23 4.50‒6.25 5.02‒5.94 2.57‒3.78
QSPAD-26D.xjau-7B E1/E2/BLUE NI AX-111581943 AX-110629026 0.0‒1.5 6.07‒7.00 3.42‒8.74 6.85‒13.27 -2.70‒-2.50
QSPAD-26D.xjau-1B E2/BLUE DS AX-110534755 AX-111590092 128.5‒129.5 653.94‒665.05 2.90‒4.64 6.60‒10.30 -3.05‒-2.39
QSPAD-26D.xjau-4D E2/BLUE DS AX-89421921 Rht-D1 54.5‒57.5 18.80‒19.29 4.21‒5.48 8.06‒9.76 -3.41‒-2.35

图3

DH群体中衰老相关性状QTL位点在染色体上的位置"

图4

稳定QTL位点间的综合效应分析"

表3

筛选获得的候选基因"

位点
QTL
左标记
Left marker
右标记
Right marker
物理位置
Position (Mb)
候选基因
Gene ID
功能注释
Functional annotation
QTMRS.xjau-4B AX-110194463 AX-111651924 15.18 TraesCS4B01G021200 基本螺旋-环-螺旋(BHLH) DNA结合超家族蛋白
Basic helix-loop-helix (BHLH) DNA-binding superfamily protein
QTMRS.xjau-4B AX-110194463 AX-111651924 13.30 TraesCS4B01G018400 衰老相关家族蛋白, 推测(DUF581)
Senescence-associated family protein, putative (DUF581)
QT1.xjau-4D AX-95659047 AX-94558069 16.30 TraesCS4D01G037000 半胱氨酸蛋白酶, 推测
Cysteine protease, putative
QSPAD-10D.xjau-4B AX-95685381 AX-94912823 171.62 TraesCS4B01G131400 蛋白质锌诱导的促进因子1
Protein zinc induced facilitator-like 1
QSPAD-14D.xjau-4D AX-111071805 AX-111662392 30.00 TraesCS4D01G054000 GRAS转录因子
GRAS transcription factor
QSPAD-18D.xjau-4D AX-95659047 AX-108944764 15.52 TraesCS4D01G033900 锌指家族蛋白
Zinc finger family protein
QSPAD-26D.xjau-1B AX-110534755 AX-111590092 658.91 TraesCS1B01G434300 WRKY家族转录因子
WRKY family transcription factor
QSPAD-26D.xjau-7B AX-111581943 AX-110629026 6.40 TraesCS7B01G010200 叶绿体POR1的蛋白伴侣样蛋白Protein chaperone-like protein of POR1, chloroplastic
[1] Tester M, Langridge P. Breeding technologies to increase crop production in a changing world. Science, 2010, 327: 818-822.
doi: 10.1126/science.1183700 pmid: 20150489
[2] Ahmed H G M, Zeng Y, Shah A N, Yar M M, Ullah A, Ali M. Conferring of drought tolerance in wheat (Triticum aestivum L.) genotypes using seedling indices. Front Plant Sci, 2022, 13: 961049.
[3] Mantri N, Patade V, Penna S, Ford R, Pang E. Abiotic stress responses in plants:present and future. New York: Springer, 2011. pp 1-19.
[4] Biswal A K, Kohli A. Cereal flag leaf adaptations for grain yield under drought: knowledge status and gaps. Mol Breed, 2013, 31: 749-766.
[5] 杨斌, 闫雪, 温宏伟, 王曙光, 逯腊虎, 范华, 景蕊莲, 孙黛珍. 不同水分条件下小麦持绿表型性状评价及其与产量相关性研究. 作物杂志, 2020, (4): 45-52.
Yang B, Yan X, Wen H W, Wang S G, Lu L H, Fan H, Jing R L, Sun D Z. Study on the evaluation of stay-green traits of wheat and its correlation with yield-related traits under different water conditions. Crops, 2020, (4): 45-52 (in Chinese with English abstract).
[6] 杜燕, 孙黛珍, 王曙光, 史雨刚, 杨进文. 小麦品种持绿性与农艺性状及产量性状相关分析. 山西农业科学, 2021, 49: 699-704.
Du Y, Sun D Z, Wang S G, Shi Y G, Yang J W. Correlation analysis of stay-green with agronomic characters and yield characters of wheat varieties. J Shanxi Agric Sin, 2021, 49: 699-704 (in Chinese with English abstract).
[7] Zhang K, Zhang Y, Chen G, Tian J. Genetic analysis of grain yield and leaf chlorophyll content in common wheat. Cereal Res Commun, 2009, 37: 499-511.
[8] 吕国锋, 范金平, 张伯桥, 高德荣, 王慧, 刘业宇, 吴素兰, 程凯, 王秀娥. 小麦旗叶衰老过程不同数学模型拟合比较及衰老特征分析. 作物学报, 2019, 45: 144-152.
doi: 10.3724/SP.J.1006.2019.81014
Lyu G F, Fan J P, Zhang B Q, Gao D R, Wang H, Liu Y Y, Wu S L, Cheng K, Wang X E. Comparison of different mathematical models describing flag leaf senescence process of wheat and characteristics of leaf senescence process. Acta Agron Sin, 2019, 45: 144-152 (in Chinese with English abstract).
[9] 陈耀宇, 王曙光, 闫雪, 梁增浩, 史雨刚, 孙黛珍. 不同水分条件下小麦持绿相关性状与产量的关系. 山西农业科学, 2019, 47: 991-997.
Chen Y Y, Wang S G, Yan X, Liang Z H, Shi Y G, Sun D Z. Relationships between stay green traits and yield of wheat under different water conditions. J Shanxi Agric Sin, 2019, 47: 991-997 (in Chinese with English abstract).
[10] Wang S, Liang Z, Sun D, Dong F, Chen W, Wang H, Jing R. Quantitative trait loci mapping for traits related to the progression of wheat flag leaf senescence. J Agric Sci, 2015, 153: 1234-1245.
[11] Hassan M A, Yang M J, Rasheed A, Tian X L, Reynolds M, Xia X C, Xiao Y G, He Z H. Quantifying senescence in bread wheat using multispectral imaging from an unmanned aerial vehicle and QTL mapping. Plant Physiol, 2021, 187: 2623-2636.
doi: 10.1093/plphys/kiab431 pmid: 34601616
[12] Vijayalakshmi K, Fritz A K, Paulsen G M, Bai G, Pandravada S, Gill B S. Modeling and mapping QTL for senescence-related traits in winter wheat under high temperature. Mol Breed, 2010, 26: 163-175.
[13] 杨斌, 乔玲, 赵佳佳, 武棒棒, 温宏伟, 张树伟, 郑兴卫, 郑军. 小麦旗叶叶绿素含量的QTL定位及验证. 作物学报, 2023, 49: 744-754.
doi: 10.3724/SP.J.1006.2023.21018
Yang B, Qiao L, Zhao J J, Wu B B, Wen H W, Zhang S W, Zheng X W, Zheng J. QTL mapping and validation of chlorophyll content of flag leaves in wheat (Triticum aestivum L.). Acta Agron Sin, 2023, 49: 744-754 (in Chinese with English abstract).
[14] 高雪, 贾中立, 林凯丽, 侯学通, 郑福兴, 耿洪伟. 水旱条件下小麦叶面积指数和叶绿素含量QTL定位. 植物遗传资源学报, 2021, 22: 1109-1119.
doi: 10.13430/j.cnki.jpgr.20210129002
Gao X, Jia Z L, Lin K L, Hou X T, Zheng F X, Geng H W. QTL mapping of leaf area index and chlorophyll content in wheat with normal irrigation and under drought stress. J Plant Genet Resour, 2021, 22: 1109-1119 (in Chinese with English abstract).
doi: 10.13430/j.cnki.jpgr.20210129002
[15] 刘大同, 余徐润, 朱冬梅, 刘健, 张晓, 高德荣. 扬麦16“灌浆快”与颖果显微结构和内源生长素的关系. 麦类作物学报, 2017, 37: 739-749.
Liu D T, Yu X R, Zhu D M, Liu J, Zhang X, Gao D R.Relationship between caryopsis microstructure and endogenous auxin level and the fast grain filling of Yangmai 16. J Triticeae Crops, 2017, 37: 739-749 (in Chinese with English abstract).
[16] 何中虎, 阎俊, 张勇.高产矮秆抗倒广适小麦新品种中麦895. 中国种业, 2014, (6): 76-77.
He Z H, Yan J, Zhang Y.New high-yielding, short-stalked and widely-adapted wheat variety Chinese Seed Industry Zhongmai 895. China Seed Industry, 2014, (6): 76-77 (in Chinese with English abstract).
[17] 陈新民, 王凤菊, 李思敏, 张文祥. 小麦与玉米杂交产生小麦单倍体与双单倍体的稳定性. 作物学报, 2013, 39: 2247-2252.
doi: 10.3724/SP.J.1006.2013.02247
Chen X M, Wang F J, Li S M, Zhang W X. Stable production of wheat haploid and doubled haploid by wheat × maize cross. Acta Agron Sin, 2013, 39: 2247-2252 (in Chinese with English abstract).
[18] Pask A J D, Pietragalla J, Mullan D M, Reynolds M P. Physiological Breeding: II. A Field Guide to Wheat Phenotyping. Chapter 12: Leaf area, green crop area and senescence. Mexico: CIMMYT, 2012. pp 58-62.
[19] Xu X T, Zhu Z W, Jia A L, Wang F J, Wang J P, Zhang Y L, Fu C, Fu L P, Bai G H, Xia X C, Hao Y F, He Z H. Mapping of QTL for partial resistance to powdery mildew in two Chinese common wheat cultivars. Euphytica, 2020, 216: 3.
[20] 辛筱筱, 栗孟飞, 刘媛, 程宏波, 常磊, 陈菁菁, 柴守玺, 杨德龙. 不同水分条件下小麦回交导入系群体旗叶持绿性与千粒重的遗传相关分析. 干旱地区农业研究, 2018, 36(1): 207-212.
Xin X X, Li M F, Liu Y, Cheng H B, Chang L, Chen J J, Chai S X, Yang D L. Genetic analysis of stay-green of flag leaf and thousand-grain weight in introgression lines of wheat under different water conditions. Agric Res Arid Areas, 2018, 36(1): 207-212 (in Chinese with English abstract).
[21] Verma V, Foulkes M J, Worland A J, Sylvester-Bradley R, Caligari P, Snape J W. Mapping quantitative trait loci for flag leaf senescence as a yield determinant in winter wheat under optimal and drought-stressed environments. Euphytica, 2004, 135: 255-263.
[22] Shi Y G, Lian Y, Shi H W, Wang S G, Fan H, Sun D Z, Jing R L. Dynamic analysis of QTLs for green leaf area duration and green leaf number of main stem in wheat. Cereal Res Commun, 2019, 47: 250-263.
doi: 10.1556/0806.47.2019.06
[23] Zhang Z B, Xu P, Jia J Z, Zhou R H. Quantitative trait loci for leaf chlorophyll fluorescence traits in wheat. Aust J Crop Sci, 2010, 4: 571-579.
[24] 郑福兴, 颜安, 高雪, 严勇亮, 王睿, 耿洪伟. 水旱处理下小麦叶绿素相对含量全基因组关联分析. 植物遗传资源学报, 2021, 22: 1334-1347.
doi: 10.13430/j.cnki.jpgr. 20210309003
Zheng F X, Yan A, Gao X, Yan Y L, Wang R, Geng H W. Genome-wide association scanning of chlorophyll SPAD in wheat under water and drought treatments. J Plant Genet Resour, 2021, 22: 1334-1347 (in Chinese with English abstract).
[25] 王琴, 刘泽厚, 万洪深, 魏会廷, 龙海, 李涛, 邓光兵, 李俊, 杨武云. 川麦42和川农16抗穗发芽QTL定位及聚合效应分析. 中国农业科学, 2020, 53: 3421-3431.
doi: 10.3864/j.issn.0578-1752.2020.17.001
Wang Q, Liu Z H, Wan H S, Wei H T, Long H, Li T, Deng G B, Li J, Yang W Y. Identification and pyramiding of QTLs for traits associated with pre-harvest sprouting resistance in two wheat cultivars Chuanmai 42 and Chuannong 16. Sci Agric Sin, 2020, 53: 3421-3431 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2020.17.001
[26] 陈黄鑫, 李聪, 吴坤燕, 王岳, 牟杨, 唐华苹, 唐力为, 兰秀锦, 马建. 四倍体小麦株高和穗长性状的QTL定位及其遗传效应分析. 麦类作物学报, 2022, 42: 799-807.
Chen H X, Li C, Wu K Y, Wang Y, Mou Y, Tang H P, Tang L W, Lan X J, Ma J. Detection of QTLs for plant height and spike length in tetraploid wheat and analysis of their genetic effect. J Triticeae Crops, 2022, 42: 799-807 (in Chinese with English abstract).
[27] 张泽源, 李玥, 赵文莎, 顾晶晶, 张傲琰, 张海龙, 宋鹏博, 吴建辉, 张传量, 宋全昊, 简俊涛, 孙道杰, 王兴荣. 小麦粒重相关性状的QTL定位及分子标记的开发. 中国农业科学, 2023, 56: 4137-4149.
doi: 10.3864/j.issn.0578-1752.2023.21.001
Zhang Z Y, Li Y, Zhao W S, Gu J J, Zhang A Y, Zhang H L, Song P B, Wu J H, Zhang C L, Song Q H, Jian J T, Sun D J, Wang X R. QTL mapping and molecular marker development of traits related to grain weight in wheat. Sci Agric Sin, 2023, 56: 4137-4149 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2023.21.001
[28] 温明星, 肖进, 徐涛, 孙丽, 王宗宽, 王海燕, 王秀娥. 利用55K芯片进行小麦生育期相关性状的QTL定位及效应分析. 作物学报, 2023, 49: 3188-3203.
doi: 10.3724/SP.J.1006.2023.31014
Wen M X, Xiao J, Xu T, Sun L, Wang Z K, Wang H Y, Wang X E. Mapping and effect analysis of QTL for phenology traits in wheat using 55K chip technology. Acta Agron Sin, 2023, 49: 3188-3203 (in Chinese with English abstract).
[29] Xie Q, Mayes S, Sparkes D L. Early anthesis and delayed but fast leaf senescence contribute to individual grain dry matter and water accumulation in wheat. Field Crops Res, 2016, 187: 24-34.
[30] Pearce S, Saville R, Vaughan S P, Chandler P M, Wilhelm E P, Sparks C A, Al-Kaff N, Korolev A, Boulton M I, Phillips A L, Hedden P, Nicholson P, Thomas S G. Molecular characterization of Rht-1 dwarfing genes in hexaploid wheat. Plant Physiol, 2011, 157: 1820-1831.
[31] Chen Z Y, Cheng X J, Chai L L, Wang Z H, Bian R L, Li J, Zhao A J, Xin M M, Guo W L, Hu Z R, Peng H R, Yao Y Y, Sun Q X, Ni Z F. Dissection of genetic factors underlying grain size and fine mapping of QTgw.cau-7D in common wheat (Triticum aestivum L.). Theor Appl Genet, 2020, 133: 149-162.
[32] Lin Y, Jiang X J, Hu H Y, Zhou K Y, Wang Q, Yu S F, Yang X L, Wang Z Q, Wu F K, Liu S H, Li C X, Deng M, Ma J, Chen G D, Wei Y M, Zheng Y L, Liu Y X. QTL mapping for grain number per spikelet in wheat using a high-density genetic map. Crop J, 2021, 9: 1108-1114.
doi: 10.1016/j.cj.2020.12.006
[33] Kim S H, Yoon J, Kim H, Lee S J, Paek N C. Rice basic Helix-Loop-Helix 079 (OsbHLH079) delays leaf senescence by attenuating ABA signaling. Rice, 2023, 16: 60.
[34] 莫黎杰, 刘夏瞳, 李慧, 陆海. 植物半胱氨酸蛋白酶在植物生长发育中的功能研究. 生物技术通报, 2021, 37(6): 202-212.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-1220
Mo L J, Liu X T, Li H, Lu H. On the function of plant cysteine protease in plant growth and development. Biotechnol Bull, 2021, 37(6): 202-212 (in Chinese with English abstract).
doi: 10.13560/j.cnki.biotech.bull.1985.2020-1220
[35] 张洁琳, 付畅. 半胱氨酸蛋白酶及半胱氨酸蛋白酶抑制剂对逆境胁迫的应答. 分子植物育种, 2018, 16: 4453-4459.
Zhang J L, Fu C. Response of cysteine protease and cysteine protease inhibitor to adverse stress. Mol Plant Breed, 2018, 16: 4453-4459 (in Chinese with English abstract).
[36] 孙丽丽, 晋秀娟, 赵锴, Islam Md A, 卢娟, 王曙光, 孙黛珍. 小麦衰老相关基因TaSAG3的生物信息学及表达模式分析. 华北农学报, 2022, 37(2): 18-27.
doi: 10.7668/hbnxb.20192703
Sun L L, Jin X J, Zhao K, Islam Md A, Lu J, Wang S G, Sun D Z. Bioinformatics and expression pattern analysis of senescence associated gene TaSAG39 in wheat. Acta Agric Boreali-Sin, 2022, 37(2): 18-27 (in Chinese with English abstract).
[37] Sharma S, Kaur G, Kumar A, Meena V, Kaur J, Pandey A K. Overlapping transcriptional expression response of wheat zinc-induced facilitator-like transporters emphasize important role during Fe and Zn stress. BMC Mol Biol, 2019, 20: 22.
doi: 10.1186/s12867-019-0139-6 pmid: 31547799
[38] 任静, 王奇, 闫彩霞, 杨德光, 单世华. 花生GRAS基因家族全基因组鉴定与表达模式分析. 分子植物育种, 网络首发[2023-11-08], http://kns.cnki.net/kcms/detail/46.1068.S.20231107.0935.004.html.
Ren J, Wang Q, Yan C X, Yang D G, Shan S H. Genome-wide identification and expression analysis of GRAS gene family in peanut. Mol Plant Breed, Published online [2023-11-08], http://kns.cnki.net/kcms/detail/46.1068.S.20231107.0935.004.html (in Chinese with English abstract).
[39] 王智兰, 韩康妮, 杜晓芬, 李禹欣, 连世超, 王军. 谷子GRAS转录因子家族的全基因组鉴定、表达分析及标记开发. 核农学报, 2022, 36: 1723-1737.
doi: 10.11869/j.issn.100-8551.2022.09.1723
Wang Z L, Han K N, Du X F, Li Y X, Lian S C, Wang J. Identification, expression analysis and marker development of GRAS transcription factor in foxtail millet. J Nucl Agric Sci, 2022, 36: 1723-1737 (in Chinese with English abstract).
doi: 10.11869/j.issn.100-8551.2022.09.1723
[40] Yin M Z, Wang Y P, Zhang L H, LI J Z, Quan W L, Yang L, Wang Q F, Chan Z L. The Arabidopsis Cys2/His2 zinc finger transcription factor ZAT18 is a positive regulator of plant tolerance to drought stress. J Exp Bot, 2017, 68: 2991-3005.
[41] 王淑叶, 伍国强, 魏明. WRKY转录因子调控植物逆境胁迫响应的作用机制. 生物工程学报, 2024, 40: 35-52.
Wang S Y, Wu G Q, Wei M. Functional mechanisms of WRKY transcription factors in regulating plant response to abiotic stresses. Chin J Biotechnol, 2024, 40: 35-52 (in Chinese with English abstract).
[42] 张丽, 甘露, 卢振华, 曹高燚, 邱丽娜, 丁博, 谢晓东, 秦志列, 王俊斌. 小麦WRKY转录因子TaWRKY72B的克隆、亚细胞定位及表达分析. 麦类作物学报, 2024, 44: 7-15.
Zhang L, Gan L, Lu Z H, Cao G Y, Qiu L N, Ding B, Xie X D, Qin Z L, Wang J B. Cloning, subcellular localization and expression analysis of WRKY transcription factor TaWRKY72B in wheat. J Triticeae Crops, 2024, 44: 7-15 (in Chinese with English abstract).
[1] 叶靓, 朱叶琳, 裴琳婧, 张思颖, 左雪倩, 李正真, 刘芳, 谭静. 联合全基因组关联和转录组分析筛选玉米拟轮枝镰孢穗腐病的抗性候选基因[J]. 作物学报, 2024, 50(9): 2279-2296.
[2] 禹海龙, 吴文雪, 裴星旭, 刘晓宇, 邓跟望, 李西臣, 甄士聪, 望俊森, 赵永涛, 许海霞, 程西永, 詹克慧. 小麦茎秆性状的转录组测序及全基因组关联分析[J]. 作物学报, 2024, 50(9): 2187-2206.
[3] 黄林玉, 张潇月, 李豪, 邓梅, 康厚扬, 魏育明, 王际睿, 蒋云峰, 陈国跃. 小麦农家种成株期条锈病抗性QTL定位及其育种效应解析[J]. 作物学报, 2024, 50(9): 2167-2178.
[4] 彭小爱, 卢茂昂, 张玲, 刘童, 曹磊, 宋有洪, 郑文寅, 何贤芳, 朱玉磊. 基于55K SNP芯片的小麦籽粒主要品质性状的全基因组关联分析[J]. 作物学报, 2024, 50(8): 1948-1960.
[5] 高维东, 胡城祯, 张龙, 张艳艳, 张沛沛, 杨德龙, 陈涛. 小麦泛素结合酶TaUBC16基因的克隆与功能分析[J]. 作物学报, 2024, 50(8): 1971-1988.
[6] 梁进宇, 尹嘉德, 侯慧芝, 薛云贵, 郭宏娟, 王硕, 赵绮志, 张绪成, 谢军红. 干旱条件下深施肥对春小麦旗叶生态化学计量特征及其光合碳同化的影响[J]. 作物学报, 2024, 50(8): 2078-2090.
[7] 陈娟, 杨婷婷, 闫素辉, 雍玉东, 张士雅, 李文阳. 拔节期渍水对软质小麦淀粉粒度分布与糊化特性的影响[J]. 作物学报, 2024, 50(7): 1877-1884.
[8] 方宇辉, 齐学礼, 李艳, 张煜, 彭超军, 华夏, 陈艳艳, 郭瑞, 胡琳, 许为钢. 强光胁迫对转玉米C4ZmPEPC+ZmPPDK基因小麦光合和生理特性的影响[J]. 作物学报, 2024, 50(7): 1647-1657.
[9] 韩丽, 汤胜胜, 李佳, 胡海斌, 刘龙龙, 吴斌. 燕麦SNP高密度遗传图谱构建及β-葡聚糖含量QTL定位[J]. 作物学报, 2024, 50(7): 1710-1718.
[10] 毕俊鸽, 曾占奎, 李琼, 洪壮壮, 颜群翔, 赵越, 王春平. 两个RIL群体中小麦籽粒品质相关性状QTL定位及KASP标记开发[J]. 作物学报, 2024, 50(7): 1669-1683.
[11] 秦娜, 叶珍言, 朱灿灿, 付森杰, 代书桃, 宋迎辉, 景雅, 王春义, 李君霞. 谷子籽粒类黄酮含量和粒色的QTL定位[J]. 作物学报, 2024, 50(7): 1719-1727.
[12] 乔志新, 张杰道, 王雨, 郭启芳, 刘燕静, 陈蕊, 胡文浩, 孙爱清. 干旱胁迫下冬小麦不同品种萌发特性差异的研究[J]. 作物学报, 2024, 50(6): 1568-1583.
[13] 马艳明, 娄鸿耀, 王威, 孙娜, 颜国荣, 张胜军, 刘杰, 倪中福, 徐麟. 新疆冬小麦籽粒品质性状遗传差异与关联分析[J]. 作物学报, 2024, 50(6): 1394-1405.
[14] 张智源, 周界光, 刘家君, 王素容, 王同著, 赵聪豪, 尤佳宁, 丁浦洋, 唐华苹, 刘燕林, 江千涛, 陈国跃, 魏育明, 马建. 基于遗传解析新模式的小麦寡分蘖QTL的鉴定和验证[J]. 作物学报, 2024, 50(6): 1373-1383.
[15] 郑雪晴, 王兴荣, 张彦军, 龚佃明, 邱法展. 玉米果穗相关性状QTL定位及重要候选基因分析[J]. 作物学报, 2024, 50(6): 1435-1450.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!