Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (10): 2575-2585.doi: 10.3724/SP.J.1006.2024.44011

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effect of light intensity on leaf photosynthetic physiology and root system of sweet potato in the early stage of growth

JIANG Yang-Ying1,2(), TANG Ming-Jun1, ZHANG Lin-Xi1, LYU Chang-Wen1, TANG Dao-Bin1, WANG Ji-Chun1,*()   

  1. 1College of Agronomy and Biotechnology, Southwest University / Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops in Chongqing, Chongqing 400702, China
    2Vegetable and Flower Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China
  • Received:2024-01-15 Accepted:2024-05-21 Online:2024-10-12 Published:2024-06-18
  • Contact: *E-mail: wjchun@swu.edu.cn
  • Supported by:
    Chongqing Technical Innovation and Application Development Special Project(cstc2019jscx-gksbX0100)

Abstract:

This study investigated the impact of different light intensities on leaf photosynthetic physiology and tuberization during the early growth stage of sweet potatoes. The findings contribute to theoretical and practical strategies for achieving high yields through relay intercropping of high-position crops with sweet potatoes. To explore the photosynthetic characteristics, tissue structure, and tuberization of sweet potato leaves, a two-factor split plot experiment was conducted in 2021. The main plot consisted of three sweet potato cultivars with varying root drying rates and leaf types: S1 (Chaoshu 1), S2 (Guangshu 87), S3 (Yusu 162). The subplot included three light intensities: L200 [(200 ± 50) μmol m-2 s-1], L500 [(500 ± 50) μmol m-2 s-1], L800 [(800 ± 50) μmol m-2 s-1]. The results revealed that decreasing light intensity led to reductions in upper epidermis thickness, palisade tissue thickness, spongy tissue thickness, leaf thickness, net photosynthetic rate (Pn), transpiration rate (Tr), stomatal conductance (Gs), RUBP carboxylase activity, number of storage roots per plant, storage root weight per plant, and dry matter weight of storage roots. Among these parameters, the treatment with high light intensity (L800) exhibited the best performance. However, the intercellular CO2 concentration (Ci), chlorophyll a content, chlorophyll b content, carotenoid content, chlorophyll a/b ratio, and storage root drying rate were optimal under low light intensity (L200). Comprehensive evaluation through factor analysis revealed that the S3 variety with high root drying rate performed best under low light intensity, while the S1 variety with low root drying rate performed the worst. Sweet potato leaves primarily enhance light energy capture by increasing the content of photosynthetic pigments and leaf area index. They adapt to low light environments through plasticity in leaf anatomical structure, photosynthetic physiology, and RUBP carboxylase activity.

Key words: sweet potato, light intensity, leaf tissue structure, photosynthetic characteristics, yield

Table 1

Sources and characteristics of tested cultivars"

品种
Cultivar
来源
Source
叶形
Leaf shape
干率
Dry matter content (%)
潮薯1号
Chaoshu 1
广东省农业科学院作物研究所
Crop Research Institute, Guangdong Academy of Agricultural Sciences
浅复缺刻
Lobed leaf margin
15
广薯87
Guangshu 87
广东省农业科学院作物研究所
Crop Research Institute, Guangdong Academy of Agricultural Sciences
深复缺刻
Dissected leaf margin
24
渝苏162
Yusu 162
重庆市甘薯研究中心, 江苏省农业科学研究院
Chongqing Sweet Potato Research Center, Jiangsu Academy of Agricultural Sciences
心脏形
Heart-shaped leaf shape
31

Fig. 1

Effects of different treatments on the leaf tissue structure of sweet potatoes UE: upper epidermis; LE: lower epidermis; PT: palisade tissue; ST: spongy tissue. S1: Chaoshu 1; S2: Guangshu 87; S3: Yusu 162. L200: 200 μmol m-2 s-1; L500: 500 μmol m-2 s-1; L800: 800 μmol m-2 s-1."

Table 2

ANOVA and multiple comparisons of leaf tissue structure and LAI for different treatments"

品种
Sweet potato cultivar
光照强度
Light intensity
上表皮厚度
Upper epidermis thickness
(μm)
下表皮厚度
Lower epidermis thickness
(μm)
栅栏组织厚度
Palisade tissue thickness
(μm)
海绵组织厚度
Spongy tissue thickness
(μm)
叶片厚度
Blade thickness
(μm)
叶面积指数
LAI
S1 L200 14.03±0.76 h 31.17±0.30 a 44.19±2.89 f 57.92±3.00 e 147.31±2.52 g 5.85±0.09 a
L500 21.47±0.36 e 25.49±1.12 c 60.99±1.00 d 75.44±7.74 c 183.39±6.05 d 3.84±0.30 d
L800 25.89±0.53 c 20.93±1.50 e 81.97±0.53 a 95.09±3.02 a 223.89±1.38 a 3.44±0.06 e
S2 L200 24.67±0.85 d 29.12±0.35 b 43.63±1.80 f 45.41±0.58 f 142.83±1.84 g 4.10±0.10 c
L500 27.36±0.24 b 24.29±0.82 cd 59.33±0.48 d 64.83±0.23 d 175.81±1.59 e 3.80±0.08 d
L800 28.91±0.33 a 24.08±0.32 cd 76.77±0.09 b 82.29±3.53 b 212.05±3.59 b 3.03±0.11 f
S3 L200 16.77±0.96 g 23.68±0.07 d 42.28±0.74 f 73.91±0.88 c 156.64±2.46 f 5.02±0.08 b
L500 18.29±0.21 f 24.35±1.04 cd 56.68±1.83 e 83.61±3.97 b 182.93±4.18 d 3.56±0.04 e
L800 21.63±0.22 e 23.68±0.07 d 69.85±0.86 c 84.40±3.27 b 199.56±3.85 c 3.00±0.06 f
方差分析(F值) ANOVA (F-value)
品种Sweet potato cultivar (S) 776.75** 25.37** 75.60** 105.24** 40.43** 120.50**
光照强度Light intensity (L) 372.67** 82.84** 1482.52** 112.69** 577.78** 422.51**
品种×光照强度(S×L) 50.51** 30.24** 13.10** 11.55** 16.24** 33.64**

Table 3

ANOVA and multiple comparisons of basic photosynthetic parameters and RUBP carboxylase activity for different treatments"

品种
Sweet potato
cultivar
光照强度
Light
intensity
净光合速率
Pn
(μmol m-2 s-1)
胞间CO2浓度
Ci
(μmol mol-1)
蒸腾速率
Tr
(mmol m-2 s-1)
气孔导度
Gs
(mol m-2 s-1)
RUBP羧化酶活性
RUBP carboxylase activity
(IU g-1)
S1 L200 7.92±0.79 e 365.90±4.60 a 1.46±0.03 g 0.31±0.02 g 0.83±0.01 e
L500 16.74±0.45 c 323.33±0.79 c 1.88±0.05 e 0.42±0.00 d 1.13±0.00 c
L800 19.81±0.17 b 267.80±5.09 d 3.33±0.16 b 0.53±0.00 b 1.20±0.02 a
S2 L200 8.84±0.34 e 362.55±1.69 a 1.38±0.05 gh 0.35±0.01 f 1.02±0.00 d
L500 14.05±0.70 d 327.35±2.32 c 2.68±0.05 c 0.43±0.02 d 1.12±0.02 c
L800 21.33±1.81 a 244.92±3.98 f 3.54±0.07 a 0.62±0.01 a 1.17±0.02 b
S3 L200 8.13±0.29 e 342.95±2.99 b 1.28±0.07 h 0.33±0.01 fg 0.77±0.01 f
L500 12.78±0.56 d 255.99±0.03 e 1.63±0.02 f 0.37±0.00 e 1.03±0.02 d
L800 16.35±0.23 c 180.59±2.53 g 2.17±0.04 d 0.47±0.01 c 1.16±0.01 b
方差分析(F值) ANOVA (F-value)
品种 Sweet potato cultivar (S) 41.53** 965.31** 312.35** 81.04** 98.85**
光照强度 Light intensity (L) 382.36** 3708.55** 1168.95** 688.97** 1276.49**
品种×光照强度(S×L) 11.27** 106.51** 89.66** 22.75** 93.47**

Table 4

ANOVA and multiple comparisons of photosynthetic pigments in leaves of different treatments"

品种
Sweet potato cultivar
光照强度
Light intensity
叶绿素a含量
Chlorophyll a content
(mg g-1)
叶绿素b含量
Chlorophyll b content
(mg g-1)
类胡萝卜素含量
Carotenoid content
(mg g-1)
叶绿素a/b
Chlorophyll a/b
S1 L200 2.54±0.06 d 0.51±0.11 cd 0.04±0.00 c 5.11±1.21 ab
L500 1.90±0.07 f 0.35±0.01 g 0.03±0.00 d 5.50±0.14 ab
L800 2.01±0.13 f 0.37±0.03 fg 0.04±0.00 d 5.37±0.17 ab
S2 L200 3.17±0.13 b 0.68±0.02 b 0.05±0.00 b 4.67±0.05 b
L500 2.41±0.10 de 0.46±0.02 de 0.04±0.00 c 5.28±0.04 ab
L800 2.31±0.04 e 0.42±0.01 efg 0.04±0.00 c 5.48±0.03 ab
S3 L200 3.93±0.18 a 0.81±0.05 a 0.07±0.00 a 4.87±0.13 b
L500 2.46±0.09 de 0.43±0.02 ef 0.04±0.00 c 5.71±0.09 a
L800 2.95±0.14 c 0.55±0.02 c 0.05±0.00 b 5.41±0.03 ab
方差分析(F值) ANOVA (F-value)
品种 Sweet potato cultivar (S) 743.09** 56.84** 348.63** 0.88
光照强度 Light intensity (L) 155.80** 79.58** 95.18** 5.04*
品种×光照强度(S×L) 11.69** 5.26* 10.37** 0.49

Table 5

ANOVA and multiple comparisons of dry matter of nodules and tubers in different treatments"

品种
Sweet potato cultivar
光照强度
Light intensity
单株结薯数
Storage root number
(lump plant-1)
单株薯重
Storage root weight
per plant (g plant-1)
块根干物质重
Storage root dry matter weight (g)
块根干率
Storage root drying rate (%)
S1 L200 3.00±0.00 cd 133.08±6.82 e 22.70±1.45 e 0.17±0.01 f
L500 3.67±0.58 bc 210.53±2.85 b 34.19±0.06 d 0.16±0.00 g
L800 5.33±0.58 a 232.65±3.32 a 37.07±0.58 c 0.16±0.00 g
S2 L200 3.67±0.58 bc 95.82±3.41 f 22.05±0.54 e 0.23±0.00 d
L500 4.33±0.58 b 149.27±6.41 d 33.14±1.23 d 0.22±0.01 e
L800 5.33±0.58 a 179.47±8.54 c 40.80±1.48 b 0.23±0.00 de
S3 L200 2.33±0.58 d 125.69±4.20 e 38.32±1.00 c 0.31±0.00 a
L500 3.00±0.00 cd 147.72±5.11 d 41.13±1.64 b 0.28±0.00 b
L800 4.33±0.58 b 184.48±0.69 c 48.30±0.85 a 0.26±0.00 c
方差分析(F值) ANOVA (F-value)
品种 Sweet potato cultivar (S) 15.50* 119.48** 215.39** 668.29**
光照强度 Light intensity (L) 31.50** 833.15** 373.68** 117.21**
品种×光照强度 (S×L) 0.38 34.71** 20.00** 45.66**

Table 6

Factor analysis of leaf physiology and root system indicators for different treatments"

参数
Parameter
载荷系数Load factor 共同度
Commonality
主因子1
Principal component 1 (PC1)
主因子2
Principal component 2 (PC2)
主因子3
Principal component 3 (PC3)
上表皮厚度Upper epidermis thickness 0.959 -0.099 -0.053 0.932
单株结薯数Storage root number 0.858 0.054 -0.320 0.841
Tr 0.840 0.199 -0.355 0.871
Gs 0.840 0.344 -0.285 0.906
RUBP羧化酶活性RUBP carboxylase activity 0.788 0.239 -0.430 0.863
Pn 0.746 0.428 -0.462 0.954
栅栏组织厚度Palisade tissue thickness 0.735 0.474 -0.444 0.961
LAI -0.748 -0.500 0.104 0.821
块根干物质重Storage root dry matter weight 0.272 0.942 0.086 0.968
叶片厚度Blade thickness -0.220 0.910 0.319 0.979
海绵组织厚度Spongy tissue thickness 0.280 0.839 -0.288 0.865
Ci -0.432 -0.802 0.076 0.836
下表皮厚度Lower epidermis thickness -0.483 -0.712 -0.012 0.740
叶绿素a含量Chlorophyll a content -0.314 0.005 0.927 0.958
叶绿素b含量Chlorophyll b content -0.286 -0.180 0.911 0.944
类胡萝卜素含量Carotenoid content -0.300 0.116 0.910 0.932
块根干率Storage root drying rate -0.165 0.444 0.806 0.874
单株薯重Storage root weight per plant 0.405 0.489 -0.652 0.828
叶绿素a/b Chlorophyll a/b 0.013 0.534 -0.531 0.567
特征值Eigenvalue 10.572 4.195 1.875
方差贡献率Variance contribution rate (%) 55.642 22.081 9.867
累积方差贡献率Cumulative variance contribution (%) 55.642 77.722 87.589
旋转后方差贡献率Rotated variance contribution (%) 33.824 27.495 26.269
累积旋转后方差贡献率
Cumulative rotated variance contribution (%)
33.824 61.320 87.589

Table 7

Comprehensive score and ranking of factor analysis for different treatments"

品种
Sweet potato cultivar
光照强度
Light intensity
PC1得分
PC1 score
PC2得分
PC2 score
PC3得分
PC3 score
综合得分
Comprehensive score
综合得分排名
Composite score ranking
S1 L200 -1.54 -1.14 -0.81 -1.195 9
L500 -0.40 -0.07 -1.42 -0.602 8
L800 0.98 0.35 -0.96 0.200 4
S2 L200 0.34 -1.73 1.10 -0.082 7
L500 0.69 -0.66 0.03 0.068 5
L800 1.56 0.17 -0.03 0.647 2
S3 L200 -1.00 0.52 1.80 0.317 3
L500 -0.95 1.17 -0.24 -0.071 6
L800 0.32 1.39 0.54 0.722 1

Fig. 2

Correlation analysis of screened indicators * and ** indicate significant correlations at the 0.05 and 0.01 probability levels, respectively. Gs: stomatal conductance; Pn: net photosynthetic rate."

[1] Liu Q C. Improvement for agronomically important traits by gene engineering in sweet potato. Breed Sci, 2017, 67: 15-26.
[2] 王艺, 韦小丽. 不同光照对植物生长、生理生化和形态结构影响的研究进展. 山地农业生物学报, 2010, 29: 353-359.
Wang Y, Wei X L. Advance on the effects of different light environments on growth, physiological biochemistry and morpho- structure of plant. J Mount Agric Biol, 2010, 29: 353-359 (in Chinese with English abstract).
[3] 盛家廉, 袁宝忠, 朱崇文, 马代夫, 齐运田. 徐薯18产量形成的生理特点. 江苏农业科学, 1982, 10(9): 26-30.
Sheng J L, Yuan B Z, Zhu C W, Ma D F, Qi Y T. Physiological characteristics of yield formation of Xushu 18. Jiangsu Agric Sci, 1982, 10(9): 26-30 (in Chinese).
[4] 易九红, 张超凡, 刘爱玉, 黄艳岚, 周虹. 甘薯生长与环境、栽培因素及内源激素的关系. 作物研究, 2012, 26: 719-724.
Yi J H, Zhang C F, Liu A Y, Huang Y L, Zhou H. Relation between growth of sweet potato and environment, cultivation and endogenous hormones. Crop Res, 2012, 26: 719-724 (in Chinese with English abstract).
[5] Oswald A, Alkämper J, Midmore D J. Response of sweet potato (Ipomoea batatas Lam.) to shading at different growth stages. J Agron Crop Sci, 1995, 175: 99-107.
[6] Park W, Chung M N, Nam S S, Kim T H, Lee H U, Goh S, Lee I B, Shin W C. Evaluation of the growth and yield of sweetpotato (Ipomoea batatas L.) at different growth stages under low light intensity. Korean J Crop Sci, 2021, 66: 146-154.
[7] Asiimwe A, Tabu I M, Lemaga B, Tumwegamire S. Effect of maize intercrop plant densities on yield and β-carotene contents of orange-fleshed sweetpotatoes. Afr Crop Sci J, 2016, 24: 75.
[8] 徐明时, 朱金庆, 褚田芬. 麦/玉米/薯三熟间套种植的密度探讨. 浙江农业科学, 1992, 33(3): 103-106.
Xu M S, Zhu J Q, Chu T F. Discussion on the density of wheat/corn/potato intercropping. J Zhejiang Agric Sci, 1992, 33(3):103-106 (in Chinese with English abstract).
[9] 王秋媛. 不同株型玉米对套作甘薯光合生理特性及产量的影响. 西南大学硕士学位论文, 重庆, 2015.
Wang Q Y. Effects of Different Plant-type Maize on Photosynthetic Physiological Characteristics and Yield of Inter-cropping Sweet Potato. MS Thesis of Southwest University, Chongqing, China, 2015 (in Chinese with English abstract).
[10] Luo Y L, Wu X L, Tang D B, Liu X, Lei Y Y, Lyu C W, Wang J C. Effect of maize (Zea mays L.) plant-type on yield and photosynthetic characters of sweet potato (Ipomoea balatas L.) in intercropping system. Not Bot Hortic Agrobo, 2017, 45: 245-254.
[11] 覃凤飞, 崔棹茗, 魏明, 陶雪, 金显玲, 唐海洋. 越夏期遮阴对3个不同紫花苜蓿品种生长特性的影响. 草地学报, 2014, 22: 101-106.
doi: 10.11733/j.issn.1007-0435.2014.01.016
Qin F F, Cui Z M, Wei M, Tao X, Jin X L, Tang H Y. Effects of shading on the growth characteristics of three Alfalfa cultivars in summer. Acta Agrest Sin, 2014, 22: 101-106 (in Chinese with English abstract).
[12] 洪莉, 张雪影, 曹锦萍, 陈令会. 遮阴对不同砧穗组合甜樱桃光合和荧光特性的影响. 江苏农业科学, 2017, 45(21): 161-164.
Hong L, Zhang X Y, Cao J P, Chen L H. Effect of shading on photosynthetic and fluorescence characteristics of sweet cherry in different rootstock combinations. Jiangsu Agric Sci, 2017, 45(21): 161-164 (in Chinese).
[13] Onwueme I C, Johnston M. Influence of shade on stomatal density, leaf size and other leaf characteristics in the major tropical root crops, tannia, sweet potato, yam, cassava and taro. Exp Agric, 2000, 36: 509-516.
[14] Johnston M, Onwueme I C. Effect of shade on photosynthetic pigments in the tropical root crops: yam, taro, tannia, cassava and sweet potato. Exp Agric, 1998, 34: 301-312.
[15] Martin F W. Differences among sweet potatoes in response to shading. Trop Agric, 1985, 62: 161-165.
[16] Oswald A, Alkämper J, Midmore D J. The effect of different shade levels on growth and tuber yield of sweet potato: II. Tuber yield. J Agron Crop Sci, 1995, 175: 29-40.
[17] Wang Q M, Hou F Y, Dong S X, Xie B T, Li A X, Zhang H Y, Zhang L M. Effects of shading on the photosynthetic capacity, endogenous hormones and root yield in purple-fleshed sweetpotato (Ipomoea batatas (L.) Lam.). Plant Growth Regul, 2014, 72: 113-122.
[18] 唐颢, 唐劲驰, 黎健龙. 高温干旱季节茶园覆盖遮荫的综合效应研究. 广东农业科学, 2008, 35(8): 26-29.
Tang H, Tang J C, Li J L. Synthetical effects of shading on tea plantation during the high-temperature and drought season. Guangdong Agric Sci, 2008, 35(8): 26-29 (in Chinese with English abstract).
[19] 叶尚红. 植物生理生化实验教程. 昆明: 云南科技出版社, 2004. pp 116-120.
Ye S H. A Course in Plant Physiology and Biochemistry Experiments. Kunming: Yunnan Science and Technology Press, 2004. pp 116-120 (in Chinese).
[20] 杨捷频. 常规石蜡切片方法的改良. 生物学杂志, 2006, 23(1): 45-46.
Yang J P. Improvement of traditional paraffin section preparation methods. J Biol, 2006, 23(1): 45-46 (in Chinese with English abstract).
[21] Evans J R, Poorter H. Photosynthetic acclimation of plants to growth irradiance: the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. Plant Cell Environ, 2001, 24: 755-767.
[22] 毛诗雅, 武佳丽, 高静, 何林平, 杨雪琴, 杨峰. 弱光对苗期大豆叶片形态结构和光合荧光特性的影响. 四川农业大学学报, 2020, 38: 409-415.
Mao S Y, Wu J L, Gao J, He L P, Yang X Q, Yang F. Effects of shading on morphological structure and photosynthetic fluorescence characteristics of seeding soybean leaves. J Sichuan Agric Univ, 2020, 38: 409-415 (in Chinese with English abstract).
[23] 吴晓颖, 高华军, 王晓琳, 吴元华, 张娟, 刘好宝, 马兴华. 光照强度对雪茄烟叶片组织结构及内源激素含量的影响. 中国烟草科学, 2021, 42(2): 37-42.
Wu X Y, Gao H J, Wang X L, Wu Y H, Zhang J, Liu H B, Ma X H. Effects of light intensity on growth and development and endogenous hormone content of cigar leaves. Chin Tob Sci, 2021, 42(2): 37-42 (in Chinese with English abstract).
[24] Oguchi R, Hikosaka K, Hirose T. Does the photosynthetic light-acclimation need change in leaf anatomy? Plant Cell Environ, 2003, 26: 505-512.
[25] Rôaçaas G, Scarano F R, Barros C F. Leaf anatomical variation in Alchornea triplinervia (Spreng) Müll. Arg. (Euphorbiaceae) under distinct light and soil water regimes. Bot J Linnean Soc, 2001, 136: 231-238.
[26] Castellanos A E. Photosynthesis and gas exchange of vines. In: Putz F E, Mooney H A, eds. The Biology of Vines. Cambridge: Cambridge University Press, 1992. pp 181-204.
[27] 杨文权, 褚继鹏, 寇建村, 赵娇, 韩明玉. 遮阴对白三叶叶片解剖结构和光合特性的影响. 草地学报, 2015, 23: 653-656.
doi: 10.11733/j.issn.1007-0435.2015.03.031
Yang W Q, Chu J P, Kou J C, Zhao J, Han M Y. Effects of shading on the leave anatomical structure and photosynthetic characteristics of white clover. Acta Agrest Sin, 2015, 23: 653-656 (in Chinese with English abstract).
[28] Sultan S E. Phenotypic plasticity and plant adaptation. Acta Bot Neerland, 1995, 44: 363-383.
[29] 战吉成, 王利军, 黄卫东. 弱光环境下葡萄叶片的生长及其在强光下的光合特性. 中国农业大学学报, 2002, 7(3): 75-78.
Zhan J C, Wang L J, Huang W D. Effects of low light environment on the growth and photosynthetic characteristics of grape leaves. J China Agric Univ, 2002, 7(3): 75-78 (in Chinese with English abstract).
[30] 刘悦秋, 孙向阳, 王勇, 刘音. 遮荫对异株荨麻光合特性和荧光参数的影响. 生态学报, 2007, 27: 3457-3464.
Liu Y Q, Sun X Y, Wang Y, Liu Y. Effects of shades on the photosynthetic characteristics and chlorophyll fluorescence parameters of Urtica dioica. Acta Ecol Sin, 2007, 27: 3457-3464 (in Chinese with English abstract).
[31] 王建华, 任士福, 史宝胜, 刘炳响, 周玉丽. 遮荫对连翘光合特性和叶绿素荧光参数的影响. 生态学报, 2011, 31: 1811-1817.
Wang J H, Ren S F, Shi B S, Liu B X, Zhou Y L. Effects of shades on the photosynthetic characteristics and chlorophyll fluorescence parameters of Forsythia suspensa. Acta Ecol Sin, 2011, 31: 1811-1817 (in Chinese with English abstract).
[32] Yao X Y, Liu X Y, Xu Z G, Jiao X L. Effects of light intensity on leaf microstructure and growth of rape seedlings cultivated under a combination of red and blue LEDs. J Integr Agric, 2017, 16: 97-105.
doi: 10.1016/S2095-3119(16)61393-X
[33] Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis. Annu Rev Plant Physiol, 1982, 33: 317-345.
[34] 吴正锋, 孙学武, 王才斌, 郑亚萍, 万书波, 刘俊华, 郑永美, 吴菊香, 冯昊. 弱光胁迫对花生功能叶片RuBP羧化酶活性及叶绿体超微结构的影响. 植物生态学报, 2014, 38: 740-748.
doi: 10.3724/SP.J.1258.2014.00069
Wu Z F, Sun X W, Wang C B, Zheng Y P, Wan S B, Liu J H, Zheng Y M, Wu J X, Feng H. Effects of low light stress on rubisco activity and the ultrastructure of chloroplast in functional leaves of peanut. Chin J Plant Ecol, 2014, 38: 740-748 (in Chinese with English abstract).
[35] 张吉旺, 董树亭, 王空军, 胡昌浩, 刘鹏. 大田遮荫对夏玉米光合特性的影响. 作物学报, 2007, 33: 216-222.
Zhang J W, Dong S T, Wang K J, Hu C H, Liu P. Effects of nitrogen application regimes on yield, quality, and nitrogen use efficiency of super japonica hybrid rice. Acta Agron Sin, 2007, 33: 216-222 (in Chinese with English abstract).
[36] 王庆美, 侯夫云, 汪宝卿, 董顺旭, 王振林, 张海燕, 李爱贤, 解备涛, 张立明. 大田遮荫对紫心甘薯块根中酶活性的影响. 核农学报, 2012, 26: 960-966.
Wang Q M, Hou F Y, Wang B Q, Dong S X, Wang Z L, Zhang H Y, Li A X, Xie B T, Zhang L M. Enzymatic activity of root qualities in purple-fleshed sweet potato under flied shading stress. J Nucl Agric Sci, 2012, 26: 960-966 (in Chinese with English abstract).
[37] 眭晓蕾, 张振贤, 张宝玺, 毛胜利, 王立浩. 不同品种辣椒幼苗光合与呼吸对弱光的响应. 中国生态农业学报, 2007, 15: 88-91.
Sui X L, Zhang Z X, Zhang B X, Mao S L, Wang L H. Response of photosynthesis and respiration to weak light in seedlings of four capsicum cultivars. Chin J Eco-Agric, 2007, 15: 88-91 (in Chinese with English abstract).
[38] Won J Y, Lee C Y. Effects of shading treatments on photosynthetic rate and growth in Codonopsis lanceloata Trautv. Korean J Med Crop Sci, 2007, 15: 152-156.
[39] Pires M V, Almeida A A F, Figueiredo A L, Gomes F P, Souza M M. Photosynthetic characteristics of ornamental passion flowers grown under different light intensities. Photosynthetica, 2011, 49: 593-602.
[40] 孙小玲, 许岳飞, 马鲁沂, 周禾. 植株叶片的光合色素构成对遮阴的响应. 植物生态学报, 2010, 34: 989-999.
doi: 10.3773/j.issn.1005-264x.2010.08.012
Sun X L, Xu Y F, Ma L Y, Zhou H. A review of acclimation of photosynthetic pigment composition in plant leaves to shade environment. Chin J Plant Ecol, 2010, 34: 989-999 (in Chinese with English abstract).
[41] Zhang S B, Hu H, Xu K, Li Z R, Yang Y P. Flexible and reversible responses to different irradiance levels during photosynthetic acclimation of Cypripedium guttatum. J Plant Physiol, 2007, 164: 611-620.
[42] Chow W S, Melis A, Anderson J M. Adjustments of photosystem stoichiometry in chloroplasts improve the quantum efficiency of photosynthesis. Proc Natl Acad Sci USA, 1990, 87: 7502-7506.
doi: 10.1073/pnas.87.19.7502 pmid: 11607105
[43] 吕伟伟, 田俊德, 郭郁娇, 于忠亮, 苑景淇, 王丽丽, 初艳, 孙勇. 不同光照强度下玫瑰光合生理特性. 北华大学学报(自然科学版), 2021, 22: 581-587.
Lyu W W, Tian J D, Guo Y J, Yu Z L, Yuan J Q, Wang L L, Chu Y, Sun Y. Photosynthetic physiological characteristics of Rosa rugosa Thunb. under different light intensities. J Beihua Univ (Nat Sci), 2021, 22: 581-587 (in Chinese with English abstract).
[44] 范元芳, 杨峰, 王锐, 黄山, 雍太文, 刘卫国, 杨文钰. 弱光对大豆生长、光合特性及产量的影响. 中国油料作物学报, 2016, 38: 71-76.
doi: 10.7505/j.issn.1007-9084.2016.01.012
Fan Y F, Yang F, Wang R, Huang S, Yong T W, Liu W G, Yang W Y. Effects of low light on growth, photosynthetic characteristics and yield of soybean. Chin J Oil Crop Sci, 2016, 38: 71-76 (in Chinese with English abstract).
[45] Kim J J. Studies on optimum shading for seedling cultivation of Cornus controversa and C. walteri. J Korean Soc For Sci, 2020, 89: 591-597.
[46] Lee K C, Han S K, Kwon Y H, Jeon S R, Lee C W, Seo D J, Park W G. Effects of shading treatments on growth and physiological characteristics of Aruncus dioicus var. kamtschaticus (Maxim.) H. Hara seedling. Korean J Med Crop Sci, 2019, 27: 30-37.
[47] 李韦柳, 唐秀桦, 韦民政, 熊军, 许娟, 闫海锋. 遮阴对淀粉型甘薯生长发育及生理特性的影响. 热带作物学报, 2017, 38: 258-263.
Li W L, Tang X H, Wei M Z, Xiong J, Xu J, Yan H F. Effects of shading on growth, development and physiological characteristics of starchy sweet potato. Chin J Trop Crops, 2017, 38: 258-263 (in Chinese with English abstract).
[48] 王庆美, 侯夫云, 汪宝卿, 王振林, 董顺旭, 张海燕, 李爱贤, 张立明, 解备涛. 遮阴处理对紫甘薯块根品质的影响. 中国农业科学, 2011, 44: 192-200.
Wang Q M, Hou F Y, Wang B Q, Wang Z L, Dong S X, Zhang H Y, Li A X, Zhang L M, Xie B T. Effects of shading stress on qualities of purple sweet potato storage roots. Sci Agric Sin, 2011, 44: 192-200 (in Chinese with English abstract).
[49] 赵文婷, 马谨, 雷纬沙, 赵亚特, 许森, 张玲, 张启堂, 傅玉凡. 遮荫对紫肉甘薯块根鲜质量、花色苷含量及产量的影响. 西南大学学报(自然科学版), 2011, 33(2): 6-11.
Zhao W T, Ma J, Lei W S, Zhao Y T, Xu S, Zhang L, Zhang Q T, Fu Y F. Influence of shading on fresh weight, anthocyanin content and root tuber yield of purple-fleshed sweet potato. J Southwest Univ (Nat Sci Edn), 2011, 33(2): 6-11 (in Chinese with English abstract).
[1] ZHANG Gui-Qin, WANG Hong-Zhang, GUO Xin-Song, ZHU Fu-Jun, GAO Han, ZHANG Ji-Wang, ZHAO Bin, REN Bai-Zhao, LIU Peng, REN Hao. Effects of organic material inputs on soil physicochemical properties and summer maize yield formation in coastal saline-alkali land [J]. Acta Agronomica Sinica, 2024, 50(9): 2323-2334.
[2] ZHANG Zhen, HE Jian-Ning, SHI Yu, YU Zhen-Wen, ZHANG Yong-Li. Effects of row spacing and planting patterns on photosynthetic characteristics and yield of wheat [J]. Acta Agronomica Sinica, 2024, 50(9): 2396-2407.
[3] XU Yi-Fan, XU Cai-Long, LI Rui-Dong, WU Zong-Sheng, HUA Jian-Xin, YANG Lin, SONG Wen-Wen, WU Cun-Xiang. Deep side fertilization improved soybean yield by optimizing leaf function and nitrogen accumulation [J]. Acta Agronomica Sinica, 2024, 50(9): 2335-2346.
[4] YANG Yu-Chen, JIN Ya-Rong, LUO Jin-Chan, ZHU Xin, LI Wei-Hang, JIA Ji-Yuan, WANG Xiao-Shan, HUANG De-Jun, HUANG Lin-Kai. Identification and expression analysis of the WD40 gene family in pearl millet [J]. Acta Agronomica Sinica, 2024, 50(9): 2219-2236.
[5] LIU Zhi-Peng, GOU Zhi-Wen, CHAI Qiang, YIN Wen, FAN Zhi-Long, HU Fa-Long, FAN Hong, WANG Qi-Ming. Effect of green manure on wheat and maize yields in diversified cropping patterns in an arid irrigated agricultural area [J]. Acta Agronomica Sinica, 2024, 50(9): 2415-2424.
[6] SUN Zhao-Hua, REN Hao, WANG Hong-Zhang, WANG Zi-Qiang, YAO Hai-Yan, XIN Ai-Mei, ZHAO Bin, ZHANG Ji-Wang, REN Bai-Zhao, LIU Peng. Effects of foliar silicon sprays on leaf photosynthetic performance and grain yield of summer maize in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2024, 50(9): 2383-2395.
[7] PENG Jie, XIE Xiao-Qi, ZHANG Zhao, YAO Xiao-Fen, QIU Shen, CHEN Dan-Dan, GU Xiao-Na, WANG Yu-Jie, WANG Chen-Chen, YANG Guo-Zheng. Relationship between cotton yield and canopy microenvironment under summer direct seeding [J]. Acta Agronomica Sinica, 2024, 50(9): 2371-2382.
[8] LOU Hong-Xiang, HUANG Xiao-Yu, JIANG Meng, NING Ning, BIAN Meng-Lei, ZHANG Lei, LUO Dong-Xu, QIN Meng-Qian, KUAI Jie, WANG Bo, WANG Jing, ZHAO Jie, XU Zheng-Hua, ZHOU Guang-Sheng. Optimal allocation of sowing date and sowing rate of late-sowing rapeseed in the Yangtze River Basin [J]. Acta Agronomica Sinica, 2024, 50(8): 2091-2105.
[9] LIU Chen, WANG Kun-Kun, LIAO Shi-Peng, YANG Jia-Qun, CONG Ri-Huan, REN Tao, LI Xiao-Kun, LU Jian-Wei. Effects of nitrogen fertilizer application levels on yield and nitrogen absorption and utilization of oilseed rape under maize-oilseed rape and rice-oilseed rape rotation fields [J]. Acta Agronomica Sinica, 2024, 50(8): 2067-2077.
[10] YANG Qi-Rui, LI Lan-Tao, ZHANG Duo, WANG Ya-Xian, SHENG Kai, WANG Yi-Lun. Effect of phosphorus application on yield, quality, light temperature physiological characteristics, and root morphology in summer peanut [J]. Acta Agronomica Sinica, 2024, 50(7): 1841-1854.
[11] FU Jing, MA Meng-Juan, ZHANG Qi-Fei, DUAN Ju-Qi, WANG Yue-Tao, WANG Fu-Hua, WANG Sheng-Xuan, BAI Tao, YIN Hai-Qing, WANG Ya. Effects of alternate wetting and drying irrigation and different nitrogen application levels on photosynthetic characteristics and nitrogen absorption and utilization of japonica rice [J]. Acta Agronomica Sinica, 2024, 50(7): 1787-1804.
[12] CAO Zi-Qi, ZHAO Xiao-Qing, ZHANG Xiang-Qian, WANG Jian-Guo, LI Juan, HAN Yun-Fei, LIU Dan, GAO Yan-Hua, LU Zhan-Yuan, REN Yong-Feng. Effects of nitrogen application levels on the accumulation, distribution of nitrogen, phosphorus and potassium, and the corresponding yield of Cyperus esculentus in sandy soil [J]. Acta Agronomica Sinica, 2024, 50(7): 1805-1817.
[13] HAN Xiao-Chen, ZHANG Gui-Qin, WANG Ya-Hui, REN Hao, WANG Hong-Zhang, LIU Guo-Li, LIN Dian-Xu, WANG Zi-Qiang, ZHANG Ji-Wang, ZHAO Bin, REN Bao-Zhao, LIU Peng. Effects of soil conditioners on soil salinity content and maize yield in coastal saline-alkali land [J]. Acta Agronomica Sinica, 2024, 50(7): 1776-1786.
[14] WANG Long, LI Jing, QIAN Chen, LIN Guo-Bing, LI Yi-Yang, YANG Guang, ZUO Qing-Song. Effects of salt stress on yield, quality, and physiology in rapeseed [J]. Acta Agronomica Sinica, 2024, 50(6): 1597-1607.
[15] LI Chang-Xi, DONG Zhan-Peng, GUAN Yong-Hu, LIU Jin-Wei, LI Hang, MEI Yong-Jun. Genetic contribution and decision coefficient analysis of agronomic characters and lint yield traits of upland cotton in southern Xinjiang [J]. Acta Agronomica Sinica, 2024, 50(6): 1486-1502.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!