Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (8): 2144-2159.doi: 10.3724/SP.J.1006.2023.22043

• CROP GENETICS & BREEDING · GERMPLASM RESOURCES · MOLECULAR GENETICS • Previous Articles     Next Articles

Development of high-quality fragrant indica CMS line by editing Badh2 gene using CRISPR-Cas9 technology in rice (Oryza sativa L.)

WEI Xin-Yu1,3(), ZENG Yue-Hui1,3(), YANG Wang-Xing2,3, XIAO Chang-Chun1,3, HOU Xin-Po2,3, HUANG Jian-Hong1,3, ZOU Wen-Guang2,3, XU Xu-Ming2,3,*()   

  1. 1 Biotechnology Research Institute, Sanming Academy of Agricultural Sciences, Sanming 365500, Fujian, China
    2 Rice Research Institute, Sanming Academy of Agricultural Sciences, Sanming 365500, Fujian, China
    3 Fujian Key Laboratory of Crop Genetic Improvement and Innovative Utilization for Mountain Area, Sanming 365500, Fujian, China
  • Received:2022-07-11 Accepted:2023-02-21 Online:2023-08-12 Published:2023-03-03
  • Contact: XU Xu-Ming E-mail:wxy1209@163.com;1_zengyuehui_1@163.com;fj63xxm@sina.com
  • About author:First author contact:**Contributed equally to this work
  • Supported by:
    China Agriculture Research System of MOF and MARA(CARS-01);Fujian Provincial Natural Science Foundation(2021J01535);Fujian Provincial Natural Science Foundation(2021J01536);Sanming Municipal Science and Technology Project(2019-N-4)

Abstract:

Fragrance is one of the important traits for quality improvement in rice, which is mainly controlled by the Badh2 gene encoding a betaine aldehyde dehydrogenase on chromosome 8. The mutation of Badh2 gene can increase the content of 2-acetyl-1-pyrroline (2-AP) and promote the fragrance production in rice. In this study, the Badh2 gene in Mingtai B (MTB), an elite maintainer line of Indica hybrid rice showing high eating quality bred by Sanming Academy of Agricultural Sciences, was edited and knocked out by using CRISPR-Cas9 technology. Two T0 transgenic lines carrying homozygous mutation on the loci of Badh2 were generated, and 48 T1 individuals derived from these two plants were genotyped by PCR amplification and sequencing analysis. A mutant line named MTB-badh2, which had a single T nucleotide insertion in the second exon of Badh2 without the vector skeleton, was finally obtained. In our study, the expression of Badh2 and the content of 2-AP were determined by semi-quantitative RT-PCR, qRT-PCR, and gas chromatography-mass spectrometry (GC-MS), respectively. Simultaneously, the 48 pairs of SSR markers recommended by “Sector Standard of Agriculture (NY/T 1433-2014)” were used to further analyze the DNA fingerprint and genetic diversity of the MTB and the MTB-badh2. The results showed that the Badh2 RNA level was significantly decreased in the MTB-badh2 compared with the wild-type MTB. In addition, the 2-AP content was dramatically increased in MTB-badh2. DNA fingerprint analysis revealed that only the Rm571 primer pair was specific for identifying allelic variation between wild type and MTB-badh2, suggesting that the genetic diversity between wild type and MTB-badh2 was very low. Furthermore, agronomic phenotype, cooking and eating quality, appearance quality of wild type, and MTB-badh2 were investigated and analyzed. There was no significant difference between MTB and MTB-badh2. The corresponding stable fragrant CMS line Mingtai A-badh2 (MTA-badh2) carrying homozygous mutant on the locus of Badh2 was successfully generated by the conventional test-crossing and back-crossing techniques combined with Badh2 sequencing analysis. Derived from this CMS line, MTA-badh2/Minghui 1831, MTA-badh2/Minghui 703, and MTA-badh2/Minghui 3009 hybrid combinations had been bred. Among them, the grain yield of MTA-badh2/Minghui 703 and MTA-badh2/Minghui 3009 were significantly increased compared with that of Mingtai you 703 and Mingtai you 3009, which were registered and released by the National Crop variety Appraisal Committee. Moreover, MTA-badh2/Minghui 1831 dramatically increased 2-AP content in the grains compared with MTA/Minghui 1831. Therefore, the CRISPR-Cas9-mediated technology could be used to edit the Badh2 and improve the fragrance in rice, and it provides the theoretical guidance for development of fragrant indica CMS line, leading to an accelerated breeding process of fragrant hybrid rice.

Key words: rice, CRISPR-Cas9, gene editing, fragrance, Badh2, 2-acetyl-1-pyrroline (2-AP)

Table 1

Primers used in this study"

引物名称 Primer name 引物序列 Primer sequence (5′-3′) 用途Usage
Target1-Fwd GGCATGGCCACGGCGATCCCGCAG 靶序列1构建
Construction of target site 1
Target1-Rev AAACCTGCGGGATCGCCGTGGCCA
Target 2-Fwd GGCAAGGCGAGATCCCGGCGGGCA 靶序列2构建
Construction of target site 2
Target 2-Rev AAACTGGCCACGGCGATCCCGCAG
HPT-F ATTTGTGTACGCCCGACAGT 鉴定HPT
PCR detection in HPT
HPT-R GTGCTTGACATTGGGGAGTT
Cas9 identify-F AGAACCTCTCCGATGCTATCC 鉴定Cas9
PCR detection in Cas9
Cas9 identify-R AGCAAGAGGACCAACGTAG
Badh2Seq-F CAAGGCAGCACAGAACAGA Badh2基因靶点测序检测
Sequencing for target in Badh2
Badh2Seq-R GTAGTCACCACCCTACCTTG
Badh2-Q-F TCCGGGCCAAGTACCTCC Badh2基因qPCR检测
qPCR detection in Badh2
Badh2-Q-R CGTCCATGTCCCATGCTG
Actin-F ACCTTCAACACCCCTGCTAT 内参基因Actin qPCR检测
qPCR detection in Actin (as internal standard)
Actin-R CACCATCACCAGAGTCCAAC

Fig. 1

CRISPR-Cas9-mediated Badh2 gene editing and its mutation analysis A: the vector map of Cas9/gRNA; B: PCR identification of the positive transgenic plant in the gene-editing plants of T0 generation with Cas9 identify-F/R; C: PCR identification of the positive transgenic plant in the gene-editing plants of T0 generation with HPT-F/R; D and E: mutation analysis of Target 1 (D) and Target 2 (E) in the gene-editing plants of T0 generation; F and H: PCR detection of Cas9 gene in the gene-editing plants of T1 generation with Cas9 identify-F/R; G and H: PCR detection of HPT gene in the gene-editing plants of T1 generation with HPT-F/R. LB, UBI, Cas9, gRNA, rU6, 35S, Hygro, and RB in Fig. A represent the vector left border, UBI promoter, Cas9 gene, guide RNA, rice U6 promoter, 35S promoter, hygromycin, and vector right border, respectively. “+” and “-” in Fig. B-C represent positive control and negative control, respectively. The nucleotides with blue and red font in Fig. D-E represent Target and PAM sequence, respectively,“-” and “+” in Fig. D-E represent base deletions and base insertion, respectively. M in Fig. B-C, F-H, and I all represent 2000 bp DNA marker."

Fig. 2

Badh2 RNA level and 2-acetyl-1-pyrroline (2-AP) content in Mingtai B (MTB) and Mingtai B-badh2 (MTB-badh2) A-B: the relative expression levels of Badh2 in MTB and MTB-badh2 analyzed by semi-quantitative RT-PCR (A) and qRT-PCR (B); C: 2-AP content in MTB and MTB-badh2; D-E: the total ion chromatograms (TIC) of 2-AP and TMP (as the internal standard) in MTB and MTB-badh2. OsActin in Fig. A was amplified as the control. Values in Fig. B-C are shown as means ± SDs of three biological replicates (Student’s t-test: *: P < 0.05, **: P < 0.01). MTB and MTB-badh2 in all figures represent Mingtai B and Mingtai B-badh2, respectively."

Fig. 3

Performance of phenotypic and agronomic traits in Mingtai B (MTB) and Mingtai B-badh2 (MTB-badh2) A-D: the phenotype comparison of plant, panicle, and grains between wild-type MTB and MTB-badh2 mutant at mature stage; E: plant height (cm); F: seed setting rate (%); G: the total grain number per panicle; H: 1000-grain weight (g); I: tiller number; J: panicle length (cm); K: flag leaf length (cm); L: flag leaf width (cm); M: grain length (cm); N: grain width (cm); O: length-width ratio. Bars: 10 cm in A, 3 cm in B, 0.5 cm in C and D. Values in Fig. E-O are shown as means ± SDs of five biological replicates (Student’s t-test: *: P < 0.05; **: P < 0.01). MTB: Mingtai B; MTB-badh2: Mingtai B-badh2."

Fig. 4

Performance of rice quality in Mingtai B (MTB) and Mingtai B-badh2 (MTB-badh2) A: gel consistency; B: alkali spreading value; C: amylose content (%); D: protein content (%); E: chalkiness degree; F: transparency degree; G: chalkiness rate (%); H: brown rice rate (%); I: white rice rate (%); J: head rice rate (%). Values are shown as means ± SDs of three biological replicates (Student’s t-test: *: P < 0.05, **: P < 0.01). MTB: Mingtai B; MTB-badh2: Mingtai B-badh2."

Fig. 5

DNA fingerprinting analysis of Mingtai B (MTB) and Mingtai B-badh2 (MTB-badh2) with 48 pairs of SSR primers Each pair of SSR primer had four samples, the first two were Mingtai B, and the last two were Mingtai B-badh2. M: 100 bp DNA ladder marker."

Fig. 6

Content of 2-AP in hybrid rice combination MTA-badh2/Minghui 1831 derived from MTA-badh2 A: plant morphology of MTA and MTA-badh2; B: plant morphology of MTA/MH1831 and MTA-badh2/MH1831; C: 2-AP content in MTA/MH1831, MTA-badh2/MH1831, and TGXXZ. Bars: 20 cm in A and B. Values in Fig. C are shown as means ± SDs of three biological replicates. Different letters indicate significantly different at the 0.01 probability level. MTA: Mingtai A, MTA-badh2: Mingtai A-badh2, MTA/MH1831: Mingtai A/Minghui 1831, MTA-badh2/MH1831: Mingtai A-badh2/Minghui 1831, TGXXZ: Taiguoxiaoxiangzhan."

Table 2

Agronomic characters and over-standard heterosis of hybrid rice combinations using Mingtai A-badh2 (MTA-badh2)"

杂交组合
Cross combination
播始历期
Duration from seeding to heading (d)
株高
Plant height
(cm)
穗长
Length of main panicle
(cm)
有效穗
Panicle number per plant
穗粒数
Grain number per panicle
结实率
Seed-settingrate (%)
千粒重
1000-grain weight
(g)
产量
Grain yield
(kg hm-2)
比CK增产
Compared with control (%)
明太A-badh2/明恢703
MTA-badh2/Minghui 703
74.7±0.6 a 113.2±2.5 a 25.5±0.3 A 12.7±0.6 a 210.0±5.0 A 78.1±0.1 a 25.5±0.2 A 10877.0±196.0 A 6.6
明太优703
Mingtaiyou 703
74.7±0.6 a 114.1±1.4 a 25.3±0.2 A 13.0±0.0 a 212.7±5.0 A 77.4±0.4 a 25.3±0.2 A 10843.8±224.2 A 6.3
天优华占(CK)
Tianyouhuazhan (CK)
74.3±0.6 a 110.9±2.2 a 23.8±0.3 B 13.3±0.6 a 193.3±4.2 B 76.6±0.5 b 23.3±0.2 B 10205.7±85.0 B 0.0
明太A-badh2/明恢3009
MTA-badh2/Minghui 3009
75.0±0.0 a 118.4±2.1 a 24.5±0.3 A 12.7±0.6 a 196.3±8.1 A 76.9±0.4 a 25.9±0.4 A 9567.2±139.4 A 6.0
明太优3009
Mingtaiyou 3009
75.3±0.6 a 119.1±2.0 a 24.9±0.3 A 12.3±0.6 a 195.3±6.5 A 77.1±0.7 a 25.5±0.7 A 9549.5±156.7 A 5.8
天优华占(CK)
Tianyouhuazhan (CK)
75.6±0.6 a 111.9±2.4 b 23.0±0.4 B 13.0±0.0 a 171.7±3.1 B 75.3±0.2 b 23.5±0.2 B 9025.5±116.0 B 0.0
[1] 王春萍, 张现伟, 白文钦, 蒋晓英, 吴红, 林清, 唐永群, 姚雄, 张巫军, 唐荣莉, 李经勇, 雷开荣. 新型香稻渝恢2103香味分子遗传特性分析. 作物学报, 2017, 43: 1499-1506.
Wang C P, Zhang X W, Bai W Q, Jiang X Y, Wu H, Lin Q, Tang Y Q, Yao X, Zhang W J, Tang R L, Li J Y, Lei K R. Molecular genetic characters of fragrance in a new fragrant rice variety Yuhui 2103. Acta Agron Sin, 2017, 43: 1499-1506. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2017.01499
[2] Chen S H, Yang Y, Shi W W, Ji Q, He F, Zhang Z D, Cheng Z K, Liu X N. Badh2, encoding betaine aldehyde dehydrogenase, inhibits the biosynthesis of 2-acetyl-1-pyrroline, a major component in rice fragrance. Plant Cell, 2008, 20: 1850-1861.
doi: 10.1105/tpc.108.058917 pmid: 18599581
[3] Bradbury L M T, Henry R J, Jin Q S, Reinke R F, Waters D L E. A perfect marker for fragrance genotyping in rice. Mol Breed, 2005, 16: 279-283.
doi: 10.1007/s11032-005-0776-y
[4] 张江丽, 李苏洁, 李娟, 普世皇, 普玉娇, 张亮, 谭亚玲, 陈丽娟, 谭学林, 金寿林, 文建成. 不同来源水稻种质资源香味基因badh2位点的鉴定. 分子植物育种, 2015, 13: 727-733.
Zhang J L, Li S J, Li J, Pu S H, Pu Y J, Zhang L, Tan Y L, Chen L J, Tan X L, Jin S L, Wen J C. Identification of the fragrant gene badh2 locus in rice germplasm resources original from different area. Mol Plant Breed, 2015, 13: 727-733. (in Chinese with English abstract)
[5] 曾跃辉, 韦新宇, 黄建鸿, 肖长春, 张锐, 尚伟, 许旭明. 不同来源特种稻香味和黑色种皮基因的鉴定与遗传特性分析. 植物遗传资源学报, 2021, 22: 951-962.
doi: 10.13430/j.cnki.jpgr.20201218001
Zeng Y H, Wei X Y, Huang J H, Xiao C C, Zhang R, Shang W, Xu X M. Identification and genetic analysis of the genes for fragrance and black pericarp in special rice from different regions. J Plant Genet Resour, 2021, 22: 951-962. (in Chinese with English abstract)
[6] Shi W W, Yang Y, Chen S H, Xu M L. Discovery of a new fragrance allele and the development of functional markers for the breeding of fragrant rice varieties. Mol Breed, 2008, 22: 185-192.
doi: 10.1007/s11032-008-9165-7
[7] Shao G N, Tang A, Tang S Q, Luo J, Jiao G A, Wu J L, Hu P S. A new deletion mutation of fragrant gene and the development of three molecular markers for fragrance in rice. Plant Breed, 2011, 130: 172-176.
doi: 10.1111/pbr.2011.130.issue-2
[8] Bradbury L M T, Gillies S A, Brushett D J, Waters D L, Henry R J. Inactivation of an aminoaldehyde dehydrogenase is responsible for fragrance in rice. Plant Mol Biol, 2008, 68: 609-616.
[9] Bradbury L M T, Fitzgerald T L, Henry R J, Jin Q S, Waters D L E. The gene for fragrance in rice. Plant Biotechnol J, 2005, 3: 363-370.
doi: 10.1111/j.1467-7652.2005.00131.x pmid: 17129318
[10] Sakthivel K, Sundaram R M, Shobha R N, Balachandran S M, Neeraja C N. Genetic and molecular basis of fragrance in rice. Biotechnol Adv, 2009, 27: 468-473.
doi: 10.1016/j.biotechadv.2009.04.001 pmid: 19371779
[11] Okpala N E, Mo Z, Duan M, Tang X. The genetics and biosynthesis of 2-acetyl-1-pyrroline in fragrant rice. Plant Physiol Biochem, 2019, 135: 272-276.
doi: 10.1016/j.plaphy.2018.12.012
[12] Shao G N, Tang S Q, Chen M L, Wei X J, He J W, Luo J, Jiao G A, Hu Y C, Xie L H, Hu P S. Haplotype variation at Badh2, the gene determining fragrance in rice. Genomics, 2013, 101: 157-162.
doi: 10.1016/j.ygeno.2012.11.010
[13] Hannon G J. RNA interference. Nature, 2002, 418: 244-251.
doi: 10.1038/418244a
[14] Cantos C, Francisco P, Trijatmiko K R, Slamet-Loedin I, Chadha-Mohanty P K. Identification of “safe harbor” loci in indica rice genome by harnessing the property of zinc-finger nucleases to induce DNA damage and repair. Front Plant Sci, 2014, 26: 302.
[15] Shan Q, Wang Y, Chen K, Liang Z, Li J, Zhang Y, Zhang K, Liu J, Voytas D F, Zheng X, Zhang Y, Gao C. Rapid and efficient gene modification in rice and Brachypodium using TALENs. Mol Plant, 2013, 6: 1365-1368.
doi: 10.1093/mp/sss162
[16] Niu X L, Tang W, Huang W Z, Ren G J, Wang Q L, Luo D, Xiao Y Y, Yang S M, Wang F, Lu B R, Gao F Y, Lu T G, Liu Y S. RNAi-directed downregulation of OsBADH2 results in aroma (2-acetyl-pyrroline) production in rice (Oryza sativa L.). BMC Plant Biol, 2008, 8: 100.
doi: 10.1186/1471-2229-8-100
[17] Chen M L, Wei X J, Shao G N, Tang S Q, Luo J, Hu P S. Fragrance of the rice grain achieved via artificial microRNA-induced down-regulation of OsBADH2. Plant Breed, 2012, 131: 584-590.
doi: 10.1111/pbr.2012.131.issue-5
[18] Shan Q W, Zhang Y, Chen K L, Zhang K, Gao C X. Creation of fragrant rice by targeted knockout of the OsBAHD2 gene using TALEN technology. Plant Biotechnol J, 2015, 13: 791-800.
doi: 10.1111/pbi.2015.13.issue-6
[19] Belhaj K, Chaparro-Garcia A, Kamoun S, Patron N J, Nekrasov V.Editing plant genomes with CRISPR/Cas9. Curr Opin Biotechnol, 2015, 32: 76-84.
doi: 10.1016/j.copbio.2014.11.007
[20] Baltes N J, Voytas D F. Enabling plant synthetic biology through genome engineering. Trends Biotechnol, 2015, 33: 120-131.
doi: 10.1016/j.tibtech.2014.11.008 pmid: 25496918
[21] 邵高能, 谢黎虹, 焦桂爱, 魏祥进, 圣忠华, 唐绍清, 胡培松. 利用CRISPR/Cas9技术编辑水稻香味基因Badh2. 中国水稻科学, 2017, 31: 216-222.
Shao G N, Xie L H, Jiao G A, Wei X J, Sheng Z H, Tang S Q, Hu P S. CRISPR/Cas9-mediated editing of the fragrant gene Badh2 in rice. Chin J Rice Sci, 2017, 31: 216-222. (in Chinese with English abstract)
[22] 祁永斌, 张礼霞, 王林友, 宋建, 王建军. 利用CRISPR/Cas9技术编辑水稻香味基因Badh2. 中国农业科学, 2020, 53: 1501-1509.
Qi Y B, Zhang L X, Wang L Y, Song J, Wang J J. CRISPR/Cas 9 targeted editing for the fragrant gene Badh2 in rice. Sci Agric Sin, 2020, 53: 1501-1509. (in Chinese with English abstract)
[23] 应兴华, 徐霞, 陈铭学, 欧阳由男, 朱智伟, 闵捷. 气相色谱-质谱技术分析香稻特征化合物2-乙酰基吡咯啉. 色谱, 2010, 28: 782-785.
Ying X H, Xu X, Chen M X, Ou-Yang Y N, Zhu Z W, Min J. Determination of 2-acetyl-1-pyrroline in aroma rice using gas chromatography-mass spectrometry. Chromatography, 2010, 28: 782-785. (in Chinese with English abstract)
[24] 彭波, 孙艳芳, 陈报阳, 孙瑞萌, 孔冬艳, 庞瑞华, 李先文, 宋晓华, 李慧龙, 李金涛, 周棋赢, 柳琳, 段斌, 宋世枝. 水稻香味基因及其在育种中的应用研究进展. 植物学报, 2017, 52: 797-807.
doi: 10.11983/CBB16197
Peng B, Sun Y F, Chen B Y, Sun R M, Kong D Y, Pang R H, Li X W, Song X H, Li H L, Li J T, Zhou Q Y, Liu L, Duan B, Song S Z. Research progress of fragrance gene and its application in rice breeding. Acta Bot Sin, 2017, 52: 797-807. (in Chinese with English abstract)
[25] Hinge V R, Patil H B, Nadaf A B.Aroma volatile analyses and 2AP characterization at various developmental stages in Basmati and Non-Basmati scented rice (Oryza sativa L.) cultivars. Rice, 2016, 9: 38.
doi: 10.1186/s12284-016-0113-6
[26] Shi Y Q, Zhao G C, Xu X L, Li J Y. Discovery of a new fragrance allele and development of functional markers for identifying diverse fragrant genotypes in rice. Mol Breed, 2014, 33: 701-708.
doi: 10.1007/s11032-013-9986-x
[27] He Q, Park Y J. Discovery of a novel fragrant allele and development of functional markers for fragrance in rice. Mol Breed, 2015, 35: 217.
doi: 10.1007/s11032-015-0412-4
[28] Liao H K, Gu Y, Diaz A, Marlett J, Takahashi Y, Li M, Suzuki K, Xu R, Hishida T, Chang C J, Esteban C R, Young J, Belmonte J C L. Use of the CRISPR/Cas9 system as an intracellular defense against HIV-1 infection in human cells. Nat Commun, 2015, 6: 6413.
doi: 10.1038/ncomms7413
[29] 梁敏敏, 张华丽, 陈俊宇, 戴冬青, 杜成兴, 王惠梅, 马良勇. 利用CRISPR/Cas9技术创制抗稻瘟病香型早籼温敏核不育系. 中国水稻科学, 2022, 36: 248-258.
doi: 10.16819/j.1001-7216.2022.211007
Liang M M, Zhang H L, Chen J Y, Dai D Q, Du C X, Wang H M, Ma L Y. Developing fragrant early indica TGMS line with blast resistance by using CRISPR/Cas9 technology. Chin J Rice Sci, 2022, 36: 248-258. (in Chinese with English abstract)
[30] Gaj T, Gersbach C A, Barbas C F. .ZFN, TALEN and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol, 2013, 31: 397-405.
doi: 10.1016/j.tibtech.2013.04.004
[31] Wang H Y, Yang H, Shivalila C S, Dawlaty M M, Cheng A W, Zhang F, Jaenisch R. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell, 2013, 153: 910-918.
doi: 10.1016/j.cell.2013.04.025 pmid: 23643243
[32] Mali P, Yang L H, Esvelt K M, Aach J, Guell M, Dicarlo J E, Norville J E, Church G M.RNA-guided human genome engineering via Cas9. Science, 2013, 339: 823-826.
doi: 10.1126/science.1232033
[33] Wang Y P, Cheng X, Shan Q W, Zhang Y, Liu J X, Gao C X, Qiu J L. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol, 2014, 32: 947-951.
doi: 10.1038/nbt.2969 pmid: 25038773
[34] 徐善斌, 郑洪亮, 刘利锋, 卜庆云, 李秀峰, 邹德堂. 利用CRISPR/Cas9技术高效创制长粒香型水稻. 中国水稻科学, 2020, 34: 406-412.
doi: 10.16819/j.1001-7216.2020.0104
Xu S B, Zheng H L, Liu L F, Bu Q Y, Li X F, Zou D T. Improvement of grain shape and fragrance by using CRISPR/Cas9 system. Chin J Rice Sci, 2020, 34: 406-412 (in Chinese with English abstract).
doi: 10.16819/j.1001-7216.2020.0104
[35] Endo M, Mikami M, Toki S. Multigene knockout utilizing off-target mutations of the CRISPR/Cas9 system in rice. Plant Cell Physiol, 2015, 56: 41-47.
doi: 10.1093/pcp/pcu154 pmid: 25392068
[36] Nawaz G, Usman B, Peng H W, Zhao N, Yuan R Z, Liu Y G, Li R B. Knockout of Pi21 by CRISPR/Cas9 and iTRAQ-based proteomic analysis of mutants revealed new insights into M. oryzae resistance in elite rice line. Genes, 2020, 11: 735.
doi: 10.3390/genes11070735
[37] 孙慧宇, 宋佳, 王敬国, 刘化龙, 孙健, 莫天宇, 徐善斌, 郑洪亮, 邹德堂. 利用CRISPR/Cas9技术编辑Badh2基因改良粳稻香味. 华北农学报, 2019, 34(4): 1-8.
doi: 10.7668/hbnxb.201751503
Sun H Y, Song J, Wang J G, Liu H L, Sun J, Mo T Y, Xu S B, Zheng H L, Zou D T. Editing Badh2 gene to improve the fragrance of japonica rice by CRISPR/Cas9 technology. Acta Agric Boreali-Sin, 2019, 34(4): 1-8. (in Chinese with English abstract)
[1] XU Gao-Feng, SHEN Shi-Cai, ZHANG Fu-Dou, YANG Shao-Song, JIN Gui-Mei, ZHENG Feng-Ping, WEN Li-Na, ZHANG Yun, WU Ran-Di. Effects of soil microbes on rice allelopathy and its mechanism of wild rice (Oryza longistaminata) and its descendants [J]. Acta Agronomica Sinica, 2023, 49(9): 2562-2571.
[2] HU Yan-Juan, XUE Dan, GENG Di, ZHU Mo, WANG Tian-Qiong, WANG Xiao-Xue. Mutation effects of OsCDF1 gene and its genomic variations in rice [J]. Acta Agronomica Sinica, 2023, 49(9): 2362-2372.
[3] LIU Kai, CHEN Ji-Jin, LIU Shuai, CHEN Xu, ZHAO Xin-Ru, SUN Shang, XUE Chao, GONG Zhi-Yun. Dynamic change profile of histone H3K18cr on rice whole genome under cold stress [J]. Acta Agronomica Sinica, 2023, 49(9): 2398-2411.
[4] TANG Jie, LONG Tuan, WU Chun-Yu, LI Xin-Peng, ZENG Xiang, WU Yong-Zhong, HUANG Pei-Jin. Identification of OsGMS2 and construction of seed production system for genic male sterile line in rice [J]. Acta Agronomica Sinica, 2023, 49(8): 2025-2038.
[5] SONG Zhao-Jian, FENG Zi-Yi, QU Tian-Ge, LYU Pin-Cang, YANG Xiao-Lu, ZHAN Ming-Yue, ZHANG Xian-Hua, HE Yu-Chi, LIU Yu-Hua, CAI De-Tian. Indica-japonica attribute identification and heterosis utilization of diploid rice lines reverted from tetraploid rice [J]. Acta Agronomica Sinica, 2023, 49(8): 2039-2050.
[6] CHEN Ting, JIAO Yan-Yang, ZHOU Xin-Ye, WU Lin-Kun, ZHANG Zhong-Yi, LIN Yu, LIN Sheng, LIN Wen-Xiong. Effects of different soil intensification treatments on growth and development of Radix pseudostellariae in continuous cropping system [J]. Acta Agronomica Sinica, 2023, 49(8): 2225-2239.
[7] JIA Lu-Qi, SUN You, TIAN Ran, ZHANG Xue-Fei, DAI Yong-Dong, CUI Zhi-Bo, LI Yang-Yang, FENG Xin-Yu, SANG Xian-Chun, and WANG Xiao-Wen. Identification of the rgs1 mutant with rapid germination of seed and isolation of the regulated gene in rice [J]. Acta Agronomica Sinica, 2023, 49(8): 2288-2295.
[8] DENG Ai-Xing, LI Ge-Xing, LYU Yu-Ping, LIU You-Hong, MENG Ying, ZHANG Jun, ZHANG Wei-Jian. Effect of shading duration after heading on grain yield and quality of japonica rice in northwest China [J]. Acta Agronomica Sinica, 2023, 49(7): 1930-1941.
[9] XU Na, XU Quan, XU Zheng-Jin, CHEN Wen-Fu. Research progress on physiological ecology and genetic basis of rice plant architecture [J]. Acta Agronomica Sinica, 2023, 49(7): 1735-1746.
[10] LIN Xiao-Xin, HUANG Ming-Jiang, WEI Yi, ZHU Hong-Hui, WANG Zi-Yi, LI Zhong-Cheng, ZHUANG Hui, LI Yan-Xi, LI Yun-Feng, CHEN Rui. Identification and gene mapping of long grain and degenerated palea (lgdp) in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2023, 49(6): 1699-1707.
[11] XU Ran, CHEN Song, XU Chun-Mei, LIU Yuan-Hui, ZHANG Xiu-Fu, WANG Dan-Ying, CHU Guang. Effects of nitrogen fertilizer rates on grain yield and nitrogen use efficiency of japonica-indica hybrid rice cultivar Yongyou 1540 and its physiological bases [J]. Acta Agronomica Sinica, 2023, 49(6): 1630-1642.
[12] DING Jie-Rong, MA Ya-Mei, PAN Fa-Zhi, JIANG Li-Qun, HUANG Wen-Jie, SUN Bing-Rui, ZHANG Jing, LYU Shu-Wei, MAO Xing-Xue, YU Hang, LI Chen, LIU Qing. Ubiquitin receptor protein OsDSK2b plays a negative role in rice leaf blast resistance and osmotic stress tolerance [J]. Acta Agronomica Sinica, 2023, 49(6): 1466-1479.
[13] HE Yong-Ming, ZHANG Fang. Study of regulating effect of auxin on floret opening in rice [J]. Acta Agronomica Sinica, 2023, 49(6): 1690-1698.
[14] TAO Yue-Yue, SHENG Xue-Wen, XU Jian, SHEN Yuan, WANG Hai-Hou, LU Chang-Ying, SHEN Ming-Xing. Characteristics of heat and solar resources allocation and utilization in rice- oilseed rape double cropping systems in the Yangtze River Delta [J]. Acta Agronomica Sinica, 2023, 49(5): 1327-1338.
[15] WEI Hai-Min, TAO Wei-Ke, ZHOU Yan, YAN Fei-Yu, LI Wei-Wei, DING Yan-Feng, LIU Zheng-Hui, LI Gang-Hua. Panicle silicon fertilizer optimizes the absorption and distribution of mineral elements in rice (Oryza sativa L.) in coastal saline-alkali soil to improve salt tolerance [J]. Acta Agronomica Sinica, 2023, 49(5): 1339-1349.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .