欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (9): 2514-2526.doi: 10.3724/SP.J.1006.2025.53004

• 耕作栽培·生理生化 • 上一篇    下一篇

玉米‖紫花苜蓿间作群体光分布特征及对植物性状和产量的影响

杨姝(), 白伟*(), 蔡倩*(), 杜桂娟   

  1. 辽宁省农业科学院耕作栽培研究所 / 农业农村部东北节水农业重点实验室, 辽宁沈阳 110161
  • 收稿日期:2025-01-16 接受日期:2025-06-01 出版日期:2025-09-12 网络出版日期:2025-06-10
  • 通讯作者: *白伟, E-mail: libai200008@126.com; 蔡倩, E-mail: caiqian2005@126.com
  • 作者简介:E-mail: yangshu-2002@163.com
  • 基金资助:
    本研究由国家重点研发计划项目(2022YFD1500600);国家自然科学基金项目(32101855);中国科学院战略性先导科技专项(XDA28090202);辽宁省“兴辽英才计划”项目(XLYC2401002);辽宁省农业科学院学科建设项目(120520303)

Characteristics of light distribution in maize‖alfalfa intercropping systems and their effects on plant traits and yield

YANG Shu(), BAI Wei*(), CAI Qian*(), DU Gui-Juan   

  1. Tillage and Cultivation Research Institute, Liaoning Academy of Agricultural Sciences / Key Laboratory of Water-saving Agriculture of Northeast, Ministry of Agriculture and Rural Affairs, Shenyang 110161, Liaoning, China
  • Received:2025-01-16 Accepted:2025-06-01 Published:2025-09-12 Published online:2025-06-10
  • Contact: *E-mail: libai200008@126.com; E-mail: caiqian2005@126.com
  • Supported by:
    National Key Research and Development Program of China(2022YFD1500600);National Natural Science Foundation of China(32101855);Strategic Priority Research Program of the Chinese Academy of Sciences(XDA28090202);Liaoning Revitalization Talents Program(XLYC2401002);Subject Construction Program of Liaoning Academy of Agricultural Sciences(120520303)

摘要: 为明确玉米‖紫花苜蓿间作群体光资源利用机制, 筛选适宜东北旱作农业区适宜的最优行比配置方式, 本研究于2021—2022年在典型旱作农业区辽宁阜新设置了2行玉米间作2行紫花苜蓿(2M2A)、2行玉米间作4行紫花苜蓿(2M4A)、4行玉米间作4行紫花苜蓿(4M4A)、玉米单作(M)和紫花苜蓿单作(A)5个试验处理的田间定位试验。研究了间作模式对玉米‖紫花苜蓿间作群体光分布及植物性状和产量的影响。结果表明: 玉米‖紫花苜蓿间作系统中紫花苜蓿冠层PAR明显小于玉米冠层; 玉米群体光环境因间作模式而得到改善, 间作玉米穗位层透光率较单作玉米提高28.8%~178.4%, 底层的透光率亦大于单作, 但与单作差异不显著; 紫花苜蓿群体光环境因间作模式变差, 间作紫花苜蓿冠层透光率较单作紫花苜蓿降低21.4%~59.2%, 底层透光率降低40.3%~50.3%; 与单作玉米相比, 间作玉米灌浆期的茎粗和单株叶面积增大, 果穗长度显著增加, 果穗直径略有增加, 秃尖长度略有减小; 间作玉米通过显著提高穗数和穗粒数显著提高了产量, 增产幅度为13.29%~28.22%; 间作紫花苜蓿干草产量较单作降低20.91%~ 49.20%。总之, 间作模式改变了玉米‖紫花苜蓿间作群体的光分布, 适宜的行比配置可以平衡玉米‖紫花苜蓿对光的竞争, 改善植物性状, 提高产量。3种间作模式相比较, 2M4A土地当量比(1.01)最高, 有一定的间作优势, 其纯效益比单作玉米和单作苜蓿分别提高0.8%和10.5%; 4M4A土地当量比为1.00, 没有间作优势, 其纯效益比单作玉米和单作苜蓿分别提高1.9%和11.8%。综合考虑间作优势和纯效益2个指标, 2M4A是东北旱作农业区适宜的间作模式。

关键词: 玉米, 紫花苜蓿, 光分布, 植物性状, 产量

Abstract:

To elucidate the light resource utilization mechanism in maize‖alfalfa intercropping systems and identify the optimal row configuration for dryland agriculture in Northeast China, a field experiment was conducted in Fuxin, Liaoning—a representative dryland region—during 2021-2022. Five planting patterns were evaluated: intercropping of two rows of maize with two rows of alfalfa (2M2A), two rows of maize with four rows of alfalfa (2M4A), four rows of maize with four rows of alfalfa (4M4A), as well as sole maize (M) and sole alfalfa (A). The effects of intercropping on light distribution, plant traits, and yield were investigated. The results showed that the photosynthetically active radiation (PAR) within the alfalfa canopy was significantly lower than that within the maize canopy. Intercropping improved the light environment of maize: compared with sole maize, light transmittance at the ear layer increased by 28.8%-178.4%, and a similar trend was observed at the canopy base, though differences were not statistically significant. In contrast, the light environment in intercropped alfalfa deteriorated, with canopy light transmittance reduced by 21.4%-59.2% and bottom light transmittance reduced by 40.3%-50.3% compared to sole alfalfa. Intercropping significantly increased stem diameter, leaf area per plant at the filling stage, and ear length of maize, while ear diameter slightly increased and bald tip length slightly decreased. Maize yield in intercropping systems increased by 13.29%-28.22%, mainly due to a significant increase in ear number and grains per ear. However, alfalfa hay yield decreased by 20.91%-49.20% compared to sole alfalfa. In summary, intercropping altered the light distribution within the maize ‖ alfalfa system. An appropriate row configuration can balance light competition between the two crops, improve plant traits, and enhance yield. Among the systems tested, 2M4A showed the highest land equivalent ratio (1.01), indicating a moderate intercropping advantage, and its net economic benefit was 0.8% and 10.5% higher than that of sole maize and sole alfalfa, respectively. Although the land equivalent ratio of 4M4A was 1.00 (no intercropping advantage), its net benefit was still 1.9% and 11.8% higher than that of sole maize and sole alfalfa. Considering both intercropping advantages and economic returns, 2M4A is recommended as a suitable intercropping model for dryland areas in Northeast China.

Key words: maize, alfalfa, light distribution, plant traits, yield

图1

不同种植模式田间示意图及光强测量位置 黑色圆点为光强测量位置; Mc、Ms和Ac分别表示单作玉米行间、单作玉米行上和单作苜蓿行间; IMc和IMs分别表示间作玉米条带中间和间作玉米边行; IAc和IAs分别表示间作苜蓿条带中间和间作苜蓿边行。M: 玉米单作; A: 紫花苜蓿单作; 2M2A: 2行玉米间作2行紫花苜蓿; 2M4A: 2行玉米间作4行紫花苜蓿; 4M4A: 4行玉米间作4行紫花苜蓿。"

图2

玉米‖紫花苜蓿间作系统的光分布特征 缩写同图1。PAR: 光合有效辐射。"

图3

不同种植模式玉米和紫花苜蓿的透光率 缩写同图1。不同小写字母表示各处理间在0.05概率水平差异显著。"

图4

玉米‖紫花苜蓿间作对玉米植株性状的影响 缩写同图1。不同小写字母表示各处理间在0.05概率水平差异显著。"

图5

玉米‖紫花苜蓿间作对玉米果穗性状的影响 缩写同图1。不同小写字母表示各处理间在0.05概率水平差异显著。"

表1

玉米‖紫花苜蓿间作对玉米产量及产量构成因素的影响"

年份
Year
种植模式
Planting model
穗数
Ear number
(×104 ear hm-2)
双穗率
Double ear rate
(%)
空秆率
Empty ears rate
(%)
穗粒数
Kernel number per spike
百粒重
100-kernel weight (g)
籽粒产量
Grain yield
(t hm-2)
2021 2M2A 5.58±0.17 a 13.5±1.5 a 0.0±0.0 b 723.6±17.5 a 41.94±0.24 a 17.46±0.38 b
2M4A 5.67±0.08 a 17.3±1.9 a 0.0±0.0 b 734.7±9.8 a 42.41±0.39 a 18.76±0.14 a
4M4A 5.50±0.14 a 15.8±0.5 a 0.0±0.0 b 697.7±3.4 a 42.51±0.29 a 17.05±0.13 b
M 5.00±0.14 b 0.0±0.0 b 3.3±1.6 a 641.9±13.8 b 41.76±0.32 a 15.05±0.16 c
2022 2M2A 5.92±0.17 a 16.6±2.3 a b 0.0±0.0 a 754.6±16.3 a 37.40±0.42 b 16.48±0.50 a
2M4A 5.83±0.22 a 18.6±1.5 a 0.0±0.0 a 734.7±24.6 a 38.73±0.25 a 17.94±0.46 a
4M4A 5.83±0.22 a 11.1±3.2 b 0.0±0.0 a 715.9±25.8 a 38.96±0.05 a 16.72±0.39 a
M 5.17±0.08 b 0.0±0.0 c 1.6±1.6 a 627.7±17.4 b 36.28±0.47 b 13.99±0.37 b
P 种植模式Model 0.003** 0.000** 0.182ns 0.000** 0.001** 0.000**
年份Year 0.050* 0.947ns 0.978ns 0.507ns 0.000** 0.003**
种植模式 × 年份
Model × year
0.915ns 0.129ns 1.000ns 0.622ns 0.050* 0.660ns

图6

玉米‖紫花苜蓿间作对紫花苜蓿生长速度的影响 缩写同图1。不同小写字母表示各处理间在0.05概率水平差异显著。"

表2

玉米‖紫花苜蓿间作对紫花苜蓿干草产量的影响"

种植模式
Planting model
2021年干草产量
Hay yield in 2021 (t hm-2)
2022年干草产量Hay yield in 2022 (t hm-2)
第1茬
1st hay
第2茬
2nd hay
第3茬
3rd hay
总和
Total hay
2M2A 2.34±0.06 d 1.99±0.42 b 3.07±0.35 b 5.05±0.71 c
2M4A 3.64±0.13 b 2.37±0.19 ab 4.38±0.21 b 6.76±0.13 b
4M4A 3.17±0.17 c 1.99±0.22 b 4.11±0.18 b 6.10±0.37 bc
A 4.60±0.14 a 3.04±0.17 a 4.39±0.28 a 2.16±0.30 9.60±0.28 a

图7

不同种植模式的土地当量比LER 缩写同图1。LER: 土地当量比。"

表3

玉米‖紫花苜蓿间作对经济效益的影响"

年份
Year
种植模式
Planting model
投入Cost input (Yuan hm-2) 产值Gross revenue (Yuan hm-2) 纯收益Net benefit (Yuan hm-2)
玉米
Maize
紫花苜蓿Alfalfa 总计
Total
玉米
Maize
紫花苜蓿Alfalfa 总计
Total
玉米
Maize
紫花苜蓿Alfalfa 总计
Total
2021 2M2A 5030 2025 7055 23,280 2730 26,010 18,250 705 18,955
2M4A 3773 3038 6811 18,760 6370 25,130 14,987 3332 18,319
4M4A 5030 2025 7055 22,740 3710 26,450 17,710 1685 19,395
M 7545 7545 30,100 30,100 22,555 22,555
A 6075 6075 16,100 16,100 10,025 10,025
2022 2M2A 5030 2125 7155 21,980 5880 27,860 16,950 3755 20,705
2M4A 3773 3138 6911 17,940 11,830 29,770 14,167 8692 22,859
4M4A 5030 2125 7155 22,300 7105 29,405 17,270 4980 22,250
M 7545 7545 27,980 27,980 20,435 20,435
A 6375 6375 33,600 33,600 27,225 27,225
[1] 周海燕, 柴强, 黄高宝, 白锦龙. 绿洲灌区典型间作模式的产量和光能利用效率. 甘肃农业大学学报, 2012, 47(6): 68-73.
Zhou H Y, Chai Q, Huang G B, Bai J L. The yield and light use efficiency of different intercropping systems in the Hexi oasis irrigation area. J Gansu Agric Univ, 2012, 47(6): 68-73 (in Chinese with English abstract).
[2] Shen L, Wang X Y, Liu T T, Wei W W, Zhang S, Keyhani A B, Li L H, Zhang W. Border row effects on the distribution of root and soil resources in maize-soybean strip intercropping systems. Soil Tillage Res, 2023, 233: 105812.
[3] 孙翔龙, 冯良山, 杨宁, 张诗行, 夏桂敏. 辽西半干旱区玉米花生间作对不同降水年型下产量与水分利用效率的影响. 沈阳农业大学学报, 2024, 55: 530-537.
Sun X L, Feng L S, Yang N, Zhang S H, Xia G M. Effects of maize and peanut intercropping on yield and water use efficiency under different precipitation years in semi-arid region of western Liaoning. J Shenyang Agric Univ, 2024, 55: 530-537 (in Chinese with English abstract).
[4] Tao D X, Delgado-Baquerizo M, Zhou G Y, Revillini D, He Q, Swanson C S, Gao Y Z. Maize-alfalfa intercropping alleviates the dependence of multiple ecosystem services on nonrenewable fertilization. Agric Ecosyst Environ, 2024, 373: 109141.
[5] 杨惠. 苜蓿玉米间作高效生产技术助力优质饲草供应. (2024-09-02) [2025-03-24]. http://www.agri.cn/zx/nyyw/202409/t20240902_8666979.htm.
Yang H. The efficient production technology of alfalfa corn intercropping helps the supply of high-quality forage grass. (2024-09-02) [2025-03-24]. http://www.agri.cn/zx/nyyw/202409/t20240902_8666979.htm (in Chinese).
[6] 陈彦龙, 齐帅, 许瑞轩, 张蓓, 王恕平, 董嘉莉, 曹文侠. 河西走廊玉米-苜蓿间作体系行数与密度对玉米生产性能的影响. 草地学报, 2025, 33: 2013-2022.
doi: 10.11733/j.issn.1007-0435.2025.06.032
Chen Y L, Qi S, Xu R X, Zhang B, Wang S P, Dong J L, Cao W X. Effects of planting row number and density on maize performance in Hexi corridor corn-alfalfa intercropping system. Acta Agrest Sin, 2025, 33: 2013-2022 (in Chinese with English abstract).
[7] 张桂国, 董树亭, 杨在宾. 苜蓿+玉米间作系统产量表现及其种间竞争力的评定. 草业学报, 2011, 20(1): 22-30.
Zhang G G, Dong S T, Yang Z B. Production performance of alfalfa+maize intercropping systems and evaluation of interspecies competition. Acta Pratac Sin, 2011, 20(1): 22-30 (in Chinese with English abstract).
[8] 邵泽强, 刘书奇, 勾千冬, 依德萍, 陆文龙. 施氮和种植模式对玉米/紫花苜蓿间作体系中作物产量、吸氮量和根系形态的影响. 东北农业科学, 2023, 48(4): 6-11.
Shao Z Q, Liu S Q, Gou Q D, Yi D P, Lu W L. Effects of nitrogen application and planting patterns on crop yield, nitrogen uptake and root morphology in a maize/alfalfa intercropping system. J Northeast Agric Sci, 2023, 48(4): 6-11 (in Chinese with English abstract).
[9] 李玉玺, 王帅, 王立波, 刘凌云, 周昶延, 何东锐, 李芳慧, 梁政帅. 玉米单作及间作紫花苜蓿对产量性状及白浆土供肥特性的影响. 玉米科学, 2018, 26(4): 126-131.
Li Y X, Wang S, Wang L B, Liu L Y, Zhou C Y, He D R, Li F H, Liang Z S. Effects of maize monoculture and intercropped with Medicago sativa L. on yield of maize and nutrients of albic soil. J Maize Sci, 2018, 26(4): 126-131 (in Chinese with English abstract).
[10] 李双伟, 朱俊奇, Jochem B.EVERS, Wopke VAN DER WERF, 郭焱, 李保国, 马韫韬. 基于植物功能-结构模型的玉米-大豆条带间作光截获行间差异研究. 智慧农业(中英文), 2022, 4(1): 97-109.
Li S W, Zhu J Q, Evers J B, Van der Werf W, Guo Y, Li B G, Ma Y T. Estimating the differences of light capture between rows based on functional-structural plant model in simultaneous maize-soybean strip intercropping. Smart Agric, 2022, 4(1): 97-109 (in Chinese with English abstract).
doi: 10.12133/j.smartag.SA202202002
[11] 王志梁, 任媛媛, 张岁岐. 黄土高原不同玉米-大豆间作模式对玉米生长发育的影响. 水土保持通报, 2014, 34(6): 321-326.
Wang Z L, Ren Y Y, Zhang S Q. Effect of maize-soybean intercropping modes on maize growth on Loess Plateau. Bull Soil Water Conserv, 2014, 34(6): 321-326 (in Chinese with English abstract).
[12] 武晶, 陈梦, 汪直华, 杨继芝, 李燕丽, 吴雨珊, 杨文钰. 带状间作不同带间距对玉米光能利用的影响. 中国农业科学, 2023, 56: 4648-4659.
doi: 10.3864/j.issn.0578-1752.2023.23.007
Wu J, Chen M, Wang Z H, Yang J Z, Li Y L, Wu Y S, Yang W Y. Effect of different strip distances on light energy utilization in strip intercropping maize. Sci Agric Sin, 2023, 56: 4648-4659 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2023.23.007
[13] Yang H, Zhang W P, Xu H S, Yu R P, Su Y, Surigaoge S, Wang P X, Yang X, Lambers H, Li L. Trade-offs and synergies of plant traits co-drive efficient nitrogen use in intercropping systems. Field Crops Res, 2023, 302: 109093.
[14] 蔡倩, 孙占祥, 王文斌, 白伟, 杜桂娟, 张悦, 张哲, 冯晨, 向午燕, 赵凤艳. 辽西半干旱区玉米大豆间作对作物产量及水分利用的影响. 中国农业气象, 2022, 43: 551-562.
Cai Q, Sun Z X, Wang W B, Bai W, Du G J, Zhang Y, Zhang Z, Feng C, Xiang W Y, Zhao F Y. Yield and water use of maize/ soybean intercropping systems in semi-arid western Liaoning. Chin J Agrometeorol, 2022, 43: 551-562 (in Chinese with English abstract).
[15] 张忠华, 尹士芳, 谢宾. 大豆玉米间作对作物生长特性及产量效益的影响. 中国农技推广, 2024, 40(3): 44-47.
Zhang Z H, Yin S F, Xie B. Effect of maize/soybean intercropping on crop growth characteristics and yield benefits. China Agric Technol Ext, 2024, 40(3): 44-47 (in Chinese).
[16] 焦念元, 李亚辉, 杨潇, 尹飞, 马超, 齐付国, 刘领, 熊瑛. 玉米/花生间作行比和施磷对玉米光合特性的影响. 应用生态学报, 2016, 27: 2959-2967.
doi: 10.13287/j.1001-9332.201609.019
Jiao N Y, Li Y H, Yang X, Yin F, Ma C, Qi F G, Liu L, Xiong Y. Effects of maize/peanut intercropping row ratio and phosphate fertilizer on photosynthetic characteristics of maize. Chin J Appl Ecol, 2016, 27: 2959-2967 (in Chinese with English abstract).
doi: 10.13287/j.1001-9332.201609.019
[17] 郑皓远, 陈喜凤, 郭丹阳, 陈蕊, 玛丽亚穆·吾斯曼, 刘颖, 谷岩. 条带间作对玉米大豆光能利用特征、产量及经济收入的影响. 东北农业科学, 2023, 48(6): 1-5.
Zheng H Y, Chen X F, Guo D Y, Chen R, Mariamu·Usman, Liu Y, Gu Y. Effects of light energy utilization characteristics, yield and economic output of maize-soybean strip intercropping. J Northeast Agric Sci, 2023, 48(6): 1-5 (in Chinese with English abstract).
[18] 高超, 陈平, 杜青, 付智丹, 罗凯, 林萍, 李易玲, 刘姗姗, 雍太文, 杨文钰. 播期、 密度对带状间作大豆茎叶生长及产量形成的影响. 作物学报, 2023, 49: 3090-3099.
doi: 10.3724/SP.J.1006.2023.34029
Gao C, Chen P, Du Q, Fu Z D, Luo K, Lin P, Li Y L, Liu S S, Yong T W, Yang W Y. Effects of sowing date and density on stem, leaf growth, and yield formation in strip intercropping soybean. Acta Agron Sin, 2023, 49: 3090-3099 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2023.34029
[19] 乔寅英, 柴强. 带型及施氮水平对玉米间作豌豆群体光分布的影响. 甘肃农业大学学报, 2017, 52(6): 33-38.
Qiao Y Y, Chai Q. Effect of band pattern and nitrogen application levels on light distribution in maize-pea intercropping systems. J Gansu Agric Univ, 2017, 52(6): 33-38 (in Chinese with English abstract).
[20] 宁自力, 王贝贝, 谭先明, 滕一鸣, 杨文钰, 杨峰. 玉米行向配置对带状套作大豆光合特性、叶片结构及产量的影响. 中国生态农业学报(中英文), 2023, 31: 1038-1052.
Ning Z L, Wang B B, Tan X M, Teng Y M, Yang W Y, Yang F. Effect of maize row orientation configurations on the photosynthetic characteristics, leaf structure and yield of soybean in relay strip intercropping systems. Chin J Eco-Agric, 2023, 31: 1038-1052 (in Chinese with English abstract).
[21] 刘涵, 丁迪, 汪江涛, 郑宾, 王笑笑, 朱晨旭, 刘娟, 刘领, 付国占, 焦念元. 玉米穗型与种植密度对玉米花生间作种间竞争的协调效应. 中国农业科学, 2024, 57: 3758-3769.
doi: 10.3864/j.issn.0578-1752.2024.19.004
Liu H, Ding D, Wang J T, Zheng B, Wang X X, Zhu C X, Liu J, Liu L, Fu G Z, Jiao N Y. Coordinated effects of maize ear type and planting density on interspecific competition in maize-peanut intercropping system. Sci Agric Sin, 2024, 57: 3758-3769 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2024.19.004
[22] 吴玉环, 王自奎, 刘亚男, 马千虎. 带幅设计对玉米/苜蓿间作群体光环境特征及光能利用效率的影响. 草业学报, 2022, 31(3): 144-155.
doi: 10.11686/cyxb2020595
Wu Y H, Wang Z K, Liu Y N, Ma Q H. Effects of row configuration on characteristics of the light environment and light use efficiency in maize/alfalfa intercropping. Acta Pratac Sin, 2022, 31(3): 144-155 (in Chinese with English abstract).
[23] Wang R N, Sun Z X, Zhang L Z, Yang N, Feng L S, Bai W, Zhang D S, Wang Q, Evers J B, Liu Y, et al. Border-row proportion determines strength of interspecific interactions and crop yields in maize/peanut strip intercropping. Field Crops Res, 2020, 253: 107819.
[24] Wang Z S, Dong B, Stomph T J, Evers J B, van der Putten P E L, Ma H H, Missale R, van der Werf W. Temporal complementarity drives species combinability in strip intercropping in the Netherlands. Field Crops Res, 2023, 291: 108757.
[25] 刘朝巍, 张恩和, 谢瑞芝, 刘武仁, 李少昆. 玉米宽窄行交替休闲保护性耕作的根系和光分布特征研究. 中国生态农业学报, 2012, 20: 203-209.
Liu C W, Zhang E H, Xie R Z, Liu W R, Li S K. Effect of conservation tillage of wide/narrow row planting on maize root and transmittance distribution. Chin J Eco-Agric, 2012, 20: 203-209 (in Chinese with English abstract).
[26] 刚永和, 张海博, 牛勇, 杜江, 陈永珑, 萨仁花. 青海东部农业干旱区不同播种方式对紫花苜蓿农艺性状和生产性能的影响. 草业科学, 2021, 38: 327-334.
Gang Y H, Zhang H B, Niu Y, Du J, Chen Y L, Sa R H. Effects of different sowing methods on the agronomic and productive properties of alfalfa in the agricultural arid area of Eastern Qinghai. Pratac Sci, 2021, 38: 327-334 (in Chinese with English abstract).
[27] 王昀杰, 樊志龙, 张刁亮, 毛守发, 胡发龙, 殷文, 柴强. 不同灌水量下玉米的产量可持续性对间作绿肥的响应. 作物学报, 2024, 50: 2562-2574.
doi: 10.3724/SP.J.1006.2024.33068
Wang Y J, Fan Z L, Zhang D L, Mao S F, Hu F L, Yin W, Chai Q. Response of the yield sustainability of maize with different irrigated quota to intercropped green manure. Acta Agron Sin, 2024, 50: 2562-2574 (in Chinese with English abstract).
[28] 刘铁宁, 徐彩龙, 谷利敏, 董树亭. 高密度种植条件下去叶对不同株型夏玉米群体及单叶光合性能的调控. 作物学报, 2014, 40: 143-153.
doi: 10.3724/SP.J.1006.2014.00143
Liu T N, Xu C L, Gu L M, Dong S T. Effects of leaf removal on canopy apparent photosynthesis and individual leaf photosynthetic characteristics in summer maize under high plant density. Acta Agron Sin, 2014, 40: 143-153 (in Chinese with English abstract).
[29] 任媛媛, 张莉, 郁耀闯, 张彦军, 张岁岐. 大豆种植密度对玉米/大豆间作系统产量形成的竞争效应分析. 作物学报, 2021, 47: 1978-1987.
doi: 10.3724/SP.J.1006.2021.04226
Ren Y Y, Zhang L, Yu Y C, Zhang Y J, Zhang S Q. Competitive effect of soybean density on yield formation in maize/soybean intercropping systems. Acta Agron Sin, 2021, 47: 1978-1987 (in Chinese with English abstract).
[30] Zhang Y, Sun Z X, Su Z C, Du G J, Bai W, Wang Q, Wang R N, Nie J Y, Sun T R, Feng C, et al. Root plasticity and interspecific complementarity improve yields and water use efficiency of maize/soybean intercropping in a water-limited condition. Field Crops Res, 2022, 282: 108523.
[31] 蔺芳, 刘晓静, 童长春, 吴勇. 间作对不同类型饲料作物光能利用特征及生产能力的影响. 应用生态学报, 2019, 30: 3452-3462.
doi: 10.13287/j.1001-9332.201910.006
Lin F, Liu X J, Tong C C, Wu Y. Effects of intercropping on light energy utilization characteristics and productivity of different feed crops. Chin J Appl Ecol, 2019, 30: 3452-3462 (in Chinese with English abstract).
[32] 龙雪芬, 孙雨萌, 张浩, 赵曦然, 杨春. 我国苜蓿进口依赖性分析及中西苜蓿贸易展望. 中国饲料, 2025, (5): 138-148.
Long X F, Sun Y M, Zhang H, Zhao X R, Yang C. Analysis of China’s alfalfa import dependence and prospects for Sino Western alfalfa trade. China Feed, 2025, (5): 138-148 (in Chinese with English abstract).
[1] 付江鹏, 柳发财, 闫宝琴, 王永栋, 李利利, 魏玮, 周英霞. 控释肥替代普通尿素对旱作高粱干物质积累分配、产量和品质的影响[J]. 作物学报, 2025, 51(9): 2501-2513.
[2] 蒋环琪, 段奥, 郭超, 黄晓梦, 艾德骏, 刘小雪, 谭静怡, 彭成林, 李曼菲, 杜何为. 渍水胁迫对玉米幼苗根系代谢的影响[J]. 作物学报, 2025, 51(9): 2295-2306.
[3] 高源, 王宇琦, 姜佳宁, 赵健雄, 王雪贺缘, 王浩宇, 张芮嘉, 徐晶宇, 贺琳. 玉米低温响应基因ZmNTL1ZmNTL5的鉴定及功能分析[J]. 作物学报, 2025, 51(9): 2318-2329.
[4] 朱维佳, 王蕊, 薛英杰, 田红丽, 范亚明, 王璐, 李松, 徐丽, 卢柏山, 史亚兴, 易红梅, 陆大雷, 杨扬, 王凤格. 兼容双平台的玉米糯质基因InDel功能标记开发与应用[J]. 作物学报, 2025, 51(9): 2330-2340.
[5] 张海燕, 解备涛, 董顺旭, 张立明, 段文学. 滴灌条件下不同水溶肥种类和配比对鲜食甘薯产量和品质的影响[J]. 作物学报, 2025, 51(9): 2485-2500.
[6] 郭保卫, 王旺, 王开, 王岩, 曾鑫, 景秀, 王晶, 倪新华, 许轲, 张洪程. 长江中下游两类型糯稻高产群体动态特征及超高产形成规律[J]. 作物学报, 2025, 51(9): 2433-2453.
[7] 杨婷婷, 陈娟, ABDUL Rehman, 李婧, 闫素辉, 汪建来, 李文阳. 花后弱光对软质小麦干物质积累转运、籽粒产量和淀粉品质的影响[J]. 作物学报, 2025, 51(8): 2204-2219.
[8] 尤根基, 谢昊, 梁毓文, 李龙, 王玉茹, 蒋晨炀, 郭剑, 李广浩, 陆大雷. 氮肥减施措施对江淮春玉米产量和氮素吸收利用的影响[J]. 作物学报, 2025, 51(8): 2152-2163.
[9] 闫喆林, 任强, 樊志龙, 殷文, 孙亚丽, 范虹, 何蔚, 胡发龙, 闫丽娟, 柴强. 氮肥后移优化绿洲灌区小麦间作玉米种间关系提高氮素利用效率[J]. 作物学报, 2025, 51(8): 2190-2203.
[10] 许忆葳, 张莹莹, 李瑞, 燕永亮, 刘允军, 孔照胜, 郑军, 王逸茹. 戈壁异常球菌csp2基因提高玉米的抗旱性[J]. 作物学报, 2025, 51(8): 1981-1990.
[11] 李宜谦, 徐守振, 刘萍, 马麒, 谢斌, 陈红. 基于40K SNP芯片的陆地棉产量构成因素全基因组关联分析及单铃重位点挖掘[J]. 作物学报, 2025, 51(8): 2128-2138.
[12] 樊友众, 王先领, 王宗铠, 王春云, 王天尧, 谢捷, 蒯婕, 汪波, 王晶, 徐正华, 赵杰, 周广生. 秸秆还田耦合氮肥运筹对稻茬油菜光合性能及产量的影响[J]. 作物学报, 2025, 51(8): 2139-2151.
[13] 武斌, 曹永刚, 胡发龙, 殷文, 樊志龙, 范虹, 柴强. 免耕轮作对减氮小麦产量下降的补偿效果[J]. 作物学报, 2025, 51(7): 1959-1968.
[14] 吴柳格, 陈坚, 张鑫, 邓艾兴, 宋振伟, 郑成岩, 张卫建. 近二十年国审冬小麦品种的产量与品质性状变化趋势研究[J]. 作物学报, 2025, 51(7): 1814-1826.
[15] 李秋云, 李世贵, 范军亮, 刘昊天, 赵晓斌, 吕硕, 王艳浩, 岳云, 张宁, 司怀军. 离子锌和纳米锌对马铃薯生理特性、产量及品质的影响[J]. 作物学报, 2025, 51(7): 1838-1849.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!