Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (11): 2787-2800.doi: 10.3724/SP.J.1006.2024.41013

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of 16,17-dihydro gibberellin A5 on canopy radiation interception and yield of Shumai 133 under different planting density

LIU Yu-Hang1,2(), ZHAO Shu-Hong1,2, ZHU Ting-Ting3,4, LIANG Zhen-Yu3,4, HE Da-Hai3,4, CHEN Jia-Bo3,4, REN Yong5, HUANG Lin1,2, FAN Gao-Qiong1,3,4,*(), WU Bi-Hua1,2,*()   

  1. 1State Key Laboratory for Exploration and Utilization of Crop Genetic Resources in Southwest China, Chengdu 611130, Sichuan, China
    2Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
    3College of Agronomy, Sichuan Agricultural University / Key Laboratory of Crop Eco-Physiology and Farming System in Southwest China, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
    4Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu 611130, Sichuan, China
    5Mianyang Academy of Agricultural Sciences / Crop Characteristic Resources Creation and Utilization Key Laboratory of Sichuan Province, Mianyang 621023, Sichuan, China
  • Received:2024-02-29 Accepted:2024-06-20 Online:2024-11-12 Published:2024-07-10
  • Contact: *E-mail: wubihua2017@126.com; E-mail: fangao20056@126.com
  • Supported by:
    Major Science and Technology Project of Sichuan Province(2022ZDZX0014)

Abstract:

The cultivar “Shumai 133” was used to investigate the effects of a new gibberellin inhibitor, 16,17-dihydro gibberellin A5(2HGA5), on canopy radiation capture and wheat yield under different planting densities in Dayi, Chengdu, from 2021 to 2023. A split-plot experiment was designed with two factors: four planting densities (2.5×106 plants hm-2 (B1), 3×106 plants hm-2 (B2), 3.5×106 plants hm-2 (B3) and 4×106 plants hm-2 (B4) and chemical regulator treatments (water control (CK0), 200 mg L-1 paclobutrazol and mepiquat chloride mixture (CK1), 100 mg L-1 2HGA5(C2), and 200 mg L-1 2HGA5(C3)). The results showed that increasing planting density deteriorated the light environment of the wheat canopy. From B1 to B4, leaf area index (LAI) and the upper interception of photosynthetically active radiation (IPAR) of flag leaves increased by 16.7%-61.0% and 10.3%-17.9%, respectively. Conversely, the leaf area, leaf angle, chlorophyll content, lower IPAR, and net photosynthetic rate(Pn) of flag leaves decreased by 8.5%-16.8%, 3.5%-11.2%, 1.6%-6.1%, 4.2%-12.0%, and 2.2%-7.3%, respectively. 2HGA5 significantly improved wheat canopy structure. Under C3 treatment, compared with CK0, flag leaf area, leaf angle, and upper IPAR were significantly reduced by 18.5%, 17.0%, and 19.1%, respectively, while chlorophyll content, LAI, lower IPAR, PAR conversion efficiency (PCE), and PAR use efficiency (PUE) increased significantly by 18.7%, 21.6%, 62.2%, 23.1%, and 26.6%, respectively. 2HGA5 also significantly increased the proportion of dry matter in grains and the accumulation of dry matter post-flowering. Under C3 treatment, these traits increased by 36.4% and 13.3%, respectively, compared to CK0. Effective spikes increased significantly by 23.7% from B1 to B4, although kernels per spike and 1000-grain weight decreased. Grain yield further increased after 2HGA5 was applied. Compared to CK0, effective spikes, kernels per spike, harvest index, and grain yield under C3 treatment increased by 4.4%, 12.4%, 10.3%, and 8.5%, respectively. In conclusion, 2HGA5 significantly improved the light environment of the wheat canopy under high planting density, enhancing traits such as IPAR, PUE, and post-anthesis dry matter accumulation, which resulted in increased grain yield. The highest yield was achieved with the treatment of 3×106 plants hm-2 combined with 200 mg L-1 2HGA5.

Key words: wheat, 16,17-dihydro gibberellin A5, planting density, canopy structure, canopy radiation interception, yield

Table 1

Physical and chemical properties of the 0-20 cm soils"

年份
Year
有机质
Organic matter
(g kg-1)
全氮
Total N
(g kg-1)
速效磷
Available P
(g kg-1)
速效钾
Available K
(g kg-1)
碱解氮
Available N
(g kg-1)
pH
2021-2022 24.05 2.01 1.67 16.39 15.70 5.95
2022-2023 23.23 3.24 1.75 16.73 16.36 6.02

Fig. 1

Average temperature and rainfall during the wheat growing season in 2021-2023"

Fig. 2

Effects of 2HGA5 on canopy-related traits of wheat under different planting density B1, B2, B3, and B4 represent planting density at four levels of 2.5×106, 3.0×106, 3.5×106, and 4.0×106 plants hm-2, respectively. CK0, CK1, C2, and C3 represent four treatments including clear water control, 200 mg L-1 paclobutrazol and mepiquat chloride mixture control, 100 mg L-1 2HGA5, and 200 mg L-1 2HGA5, respectively. Different lowercase letters of each density indicate significant differences at the 0.05 probability level. *: P < 0.05; **: P < 0.01; ns: no significant difference."

Fig. 3

Effects of 2HGA5 on chlorophyll content of wheat under different planting density JT: jointing; BT: booting; AT: anthesis; GF30: grain filling 30 d. B1, B2, B3, and B4 represent planting density at four levels of 2.5×106, 3.0×106, 3.5×106, and 4.0×106 plants hm-2, respectively. CK0, CK1, C2, and C3 represent four treatments including clear water control, 200 mg L-1 paclobutrazol and mepiquat chloride mixture control, 100 mg L-1 2HGA5, and 200 mg L-1 2HGA5, respectively. Different lowercase letters of each density indicate significant difference at the 0.05 probability level."

Fig. 4

Effects of 2HGA5 on LAI of wheat under different planting density JT: jointing; BT: booting; AT: anthesis; GF30: grain filling 30 d. B1, B2, B3, and B4 represent planting density at four levels of 2.5×106, 3.0×106, 3.5×106, and 4.0×106 plants hm-2, respectively. CK0, CK1, C2, and C3 represent four treatments including clear water control, 200 mg L-1 paclobutrazol and mepiquat chloride mixture control, 100 mg L-1 2HGA5, and 200 mg L-1 2HGA5, respectively. Different lowercase letters of each density indicate significant difference at the 0.05 probability level."

Fig. 5

Effect of 2HGA5 on IPAR of wheat under different planting density B1, B2, B3, and B4 represent planting density at four levels of 2.5×106, 3.0×106, 3.5×106, and 4.0×106 plants hm-2, respectively. CK0, CK1, C2, and C3 represent four treatments including clear water control, 200 mg L-1 paclobutrazol and mepiquat chloride mixture control, 100 mg L-1 2HGA5, and 200 mg L-1 2HGA5, respectively. Different lowercase letters of each density indicate significant difference at the 0.05 probability level."

Table 2

Effects of 2HGA5 on PCE and PUE of wheat under different planting density"

密度
Density
化控剂
Chemical regulator
孕穗-开花BT-AT 开花-灌浆30 d AT-GF30 灌浆30 d-成熟 GF30-MT
PCE PUE PCE PUE PCE PUE
B1 CK0 2.5±2.3 d 2.3±0.2 c 2.4±0.2 d 2.0±0.2 d 1.6±0.6 b 1.2±0.4 c
CK1 3.5±0.8 a 3.2±0.8 a 3.3±0.1 a 2.8±1.0 a 1.8±1.0 a 1.4±0.9 a
C2 2.9±1.8 c 2.7±0.2 b 2.8±0.7 c 2.4±0.6 c 1.6±0.3 b 1.3±0.1 b
C3 3.2±1.8 b 3.1±0.2 a 3.1±1.0 b 2.6±0.3 b 1.7±0.6 a 1.4±0.4 a
B2 CK0 2.6±0.7 b 2.5±0.6 b 2.6±0.7 b 2.2±0.6 b 1.7±0.8 c 1.3±0.7 c
CK1 3.6±2.1 a 3.4±0.2 a 3.0±0.8 a 2.7±0.7 a 2.0±0.5 a 1.6±0.3 ab
C2 2.7±0.3 b 2.6±0 b 2.5±0.9 b 2.3±1.0 b 1.9±0.6 b 1.6±0.5 b
C3 3.4±1.3 a 3.3±0.1 a 2.8±0.5 a 2.7±0.3 a 2.0±0.5 ab 1.7±0.4 a
B3 CK0 3.1±0.3 b 2.9±0.6 b 2.6±0.9 c 2.3±0.4 c 1.7±0.4 c 1.5±0.3 c
CK1 3.1±1.5 b 3.0±0.1 b 2.6±0.6 bc 2.4±0.3 bc 1.7±0.4 c 1.5±0.4 c
C2 3.0±0.7 b 2.9±0.7 b 2.8±1.0 ab 2.6±1.2 ab 1.9±0.1 b 1.7±0.1 b
C3 3.6±0.8 a 3.5±0.9 a 2.9±0.8 a 2.7±0.8 a 2.1±0.5 a 2.0±0.5 a
B4 CK0 3.2±0.7 b 3.1±0.5 b 2.4±0.8 b 2.3±0.6 b 1.6±0.6 c 1.5±0.4 d
CK1 3.1±1.3 b 3.0±0.1 b 2.5±0.1 b 2.3±0.9 b 1.7±0.5 bc 1.6±0.4 c
C2 3.2±2.8 b 3.1±0.3 b 2.7±0.2 a 2.6±0.1 a 1.8±0.6 b 1.7±0.6 b
C3 3.7±0.7 a 3.6±0.6 a 2.8±0.2 a 2.7±0.3 a 2.0±0.3 a 1.9±0.3 a
F B 5.1* 11.4** 25.0** 0.7ns 23.9** 73.6**
F-value C 38.2** 44.7** 21.6** 41.3** 36.8** 78.3**
B×C 7.1** 6.9** 6.4** 8.2** 7.1** 7.9**

Fig. 6

Effects of 2HGA5 on net photosynthetic rate of wheat under different planting density B1, B2, B3, and B4 represent planting density at four levels of 2.5×106, 3.0×106, 3.5×106, and 4.0×106 plants hm-2, respectively. CK0, CK1, C2, and C3 represent four treatments including clear water control, 200 mg L-1 paclobutrazol and mepiquat chloride mixture control, 100 mg L-1 2HGA5, and 200 mg L-1 2HGA5, respectively. Different lowercase letters of each density indicate significant difference at the 0.05 probability level. *: P < 0.05; **: P < 0.01; ns: no significant difference."

Fig. 7

Effect of 2HGA5 on dry matter distribution of wheat under different planting density B1, B2, B3, and B4 represent planting density at four levels of 2.5×106, 3.0×106, 3.5×106, and 4.0×106 plants hm-2, respectively. CK0, CK1, C2, and C3 represent four treatments including clear water control, 200 mg L-1 paclobutrazol and mepiquat chloride mixture control, 100 mg L-1 2HGA5, and 200 mg L-1 2HGA5, respectively. Different lowercase letters of each density indicate significant difference at the 0.05 probability level."

Table 3

Effects of 2HGA5 on dry matter accumulation and transport of wheat under different planting density"

密度Density 化控剂
Chemical regulator
2021-2022 2022-2023
花前干物质转运量DBFT(kg hm-2) 对籽粒的贡献率CRDBA(%) 花后干物质积累量DAPA(kg hm-2) 对籽粒的贡献率CRDPA(%) 花前干物质转运量DBFT(kg hm-2) 对籽粒的贡献率CRDBA(%) 花后干物质积累量
DAPA(kg hm-2)
对籽粒的贡献率CRDPA(%)
B1 CK0 2768±99 a 35.9±0.7 a 4932±56 c 64.1±0.7 b 2906±59 a 38.6±0.9 a 4618±82 b 61.4±0.9 b
CK1 2838±57 a 34.7±0.3 a 5342±64 a 65.3±0.3 b 2731±275 a 34.7±3.3 b 5126±237 a 65.3±3.3 a
C2 2829±58 a 35.7±0.3 a 5101±73 b 64.3±0.3 b 2974±252 a 37.6±2.2 ab 4928±182 a 62.4±2.2 ab
C3 2728±122 a 32.9±1.5 b 5362±170 a 67.1±1.5 a 2973±360 a 36.6±4.3 ab 5138±348 a 63.4±4.3 ab
B2 CK0 3487±234 a 40.4±1.9 a 5128±82 c 59.6±1.9 b 3014±124 a 37.3±1.2 a 5065±54 b 62.7±1.2 a
CK1 3330±157 a 37.4±1.3 b 5575±42 b 62.6±1.3 a 2901±266 a 34.3±2.8 a 5550±164 a 65.7±2.8 a
C2 3367±49 a 37.8±0.2 b 5553±68 b 62.3±0.2 a 3125±116 a 36.6±1.3 a 5424±100 a 63.4±1.3 a
C3 3342±298 a 36.5±2.2 b 5808±43 a 63.5±2.2 a 3061±161 a 35.2±1.8 a 5633±155 a 64.8±1.8 a
B3 CK0 2822±18 a 34.8±0.1 a 5285±49 d 65.2±0.1 c 2743±144 a 34.2±1.6 a 5273±124 c 65.8±1.6 b
CK1 2857±139 a 34.2±1.4 a 5497±62 c 65.8±1.4 c 2749±379 a 32.9±3.9 ab 5583±234 bc 67.1±3.9 ab
C2 2727±169 ab 32.0±1.8 b 5793±127 b 68.0±1.8 b 2677±114 a 31.5±1.2 ab 5832±87 ab 68.5±1.2 ab
C3 2488±46 b 29.4±0.6 c 5967±67 a 70.6±0.6 a 2371±180 a 28.1±2.2 b 6062±193 a 71.9±2.2 a
B4 CK0 2365±88 a 31.7±0.7 ab 5097±16 c 68.3±0.7 c 2713±88 a 35.1±0.9 a 5009±50 c 64.9±0.9 b
CK1 2498±91 a 33.0±0.7 a 5068±40 c 67.0±0.7 bc 2741±130 a 34.4±1.4 ab 5230±77 bc 65.6±1.4 ab
C2 2375±139 a 29.8±1.0 b 5601±90 b 70.3±1.0 b 2494±370 a 31.3±4.9 ab 5485±479 ab 68.7±4.9 ab
C3 2288±29 a 27.5±0.1 c 6041±114 a 72.5±0.1 a 2349±111 a 28.8±1.4 b 5794±126 a 71.2±1.4 a
F B 50.3** 38.0** 51.0** 38.0** 11.7** 18.6** 42.9** 18.6**
F-value C 1.6ns 21.8** 94.8** 21.8** 0.7ns 3.1* 12.6** 3.1*
B×C 0.75ns 2.5* 10.1** 2.5* 0.9ns 0.8ns 1.7ns 0.9ns

Table 4

Effects of 2HGA5 on average yield and yield components of wheat under different planting density over two years"

密度
Density
化控剂
Chemical
regulator
有效穗数
Effective spike number (×104 hm-2)
穗粒数
Grain number per spike (g)
千粒重
1000-grain weight (g)
收获指数
Harvest index
产量
Grain yield
(kg hm-2)
B1 CK0 336±5 h 46.4±0.3 bcde 49.5±0.5 a 0.38±0.01 fg 7612±70 i
CK1 351±5 g 48.5±0.5 ab 49.1±0.4 abc 0.40±0 bcde 8019±78 g
C2 349±7 g 48.5±0.8 ab 49.3±0.5 a 0.41±0.01 bc 7916±215 gh
C3 350±3 g 47.7±0.6 abc 47.8±0.5 cdef 0.42±0 ab 8050±57 fg
B2 CK0 373±5 f 46.3±0.6 cde 49.2±1.1 ab 0.38±0 fg 8347±116 de
CK1 397±1 e 47.8±0.7 abc 47.9±0.2 bcde 0.41±0.01 bcd 8678±106 bc
C2 399±3 de 47.0±0.5 bcd 47.0±0.1 ef 0.41±0.01 abc 8735±67 ab
C3 392±6 e 49.4±0.6 a 46.9±0.4 efg 0.43±0.02 a 8922±143 a
B3 CK0 410±6 cd 44.8±1.4 efg 48.6±0.3 abcd 0.37±0.01 g 8061±56 fg
CK1 430±5 a 46.6±1.0 bcde 47.4±1.0 def 0.39±0 defg 8343±74 de
C2 427±3 ab 45.2±1.0 def 47.8±0.1 cdef 0.39±0 cdefg 8514±36 cd
C3 431±1 a 47.4±0.7 abc 46.5±0.7 fg 0.43±0 a 8444±17 de
B4 CK0 417±4 bc 41.1±1.3 h 47.4±0.2 def 0.38±0 efg 7592±20 i
CK1 417±7 bc 43.0±0.8 g 46.6±1.2 efg 0.40±0 cdef 7769±66 hi
C2 415±8 bc 43.9±1.1 fg 47.1±0 ef 0.40±0 bcdef 7977±157 gh
C3 435±10 a 46.2±1.5 cde 45.7±0.4 g 0.42±0 ab 8236±72 ef
F B 232.9** 23.3** 19.7** 2.5ns 117.5**
F-value C 21.7** 23.4** 14.6** 33.7** 39.0**
B×C 3.2* 3.2* 0.9ns 1.2ns 1.8ns

Fig. 8

Correlation analysis of photosynthetic traits with dry matter accumulation and yield Chl: chlorophyll content; LAI: leaf area index; IPAR: interception of PAR; PCE: PAR conversion efficiency; PUE: PAR use efficiency; DAPA: dry matter accumulation of post anthesis. *: P < 0.05; **: P < 0.01; ***: P < 0.001."

[1] Yang H K, Xiao Y, He P, Ai D L, Zou Q S, Hu J, Liu Q, Huang X L, Zheng T, Fan G Q. Straw mulch-based no-tillage improves tillering capability of dryland wheat by reducing asymmetric competition between main stem and tillers. Crop J, 2022, 10: 864-878.
doi: 10.1016/j.cj.2021.09.011
[2] Liu F, Zhou F, Wang X, Wang X L, Zhan X X, Guo Z X, Liu Q L, Wei G, Lan T Q, Feng D J, Kong F L, Yuan J C. Optimizing nitrogen management enhances stalk lodging resistance and grain yield in dense planting maize by improving canopy light distribution. Eur J Agron, 2023, 148: 126871.
[3] 刘锟, 江继顺, 石玉, 李美. 不同产量水平麦田小麦冠层光能利用和干物质积累特性研究. 山东农业科学, 2023, 55(9): 39-45.
Liu K, Jiang J X, Shi Y, Li M. Characteristics of light energy utilization and dry matter accumulation in wheat canopy in wheat fields with different yield levels. Shandong Agric Sci, 2023, 55(9): 39-45 (in Chinese with English abstract).
[4] Yao H S, Zhang Y L, Yi X P, Hu Y Y, Luo H H, Gou L, Zhang W F. Plant density alters nitrogen partitioning among photosynthetic components, leaf photosynthetic capacity and photosynthetic nitrogen use efficiency in field-grown cotton. Field Crops Res, 2015, 184: 39-49.
[5] Zhang Q, Zhang L, Evers J, van der Werf W, Zhang W Q, Duan L S. Maize yield and quality in response to plant density and application of a novel plant growth regulator. Field Crops Res, 2014, 164: 82-89.
[6] 冯伟, 李晓, 邱记东, 王晨阳, 郭天财. 种植行距对两种穗型小麦品种籽粒糖代谢及灌浆特性的影响. 麦类作物学报, 2010, 30: 875-880.
Feng W, Li X, Qiu J D, Wang C Y, Guo T C. Effects of row spacing on sugar metabolism and grain filling of two spike types of winter wheat. J Triticeae Crops, 2010, 30: 875-880 (in Chinese with English abstract).
[7] 徐彤, 吕艳杰, 邵玺文, 耿艳秋, 王永军. 不同时期化控对密植玉米冠层结构及籽粒灌浆特性的影响. 作物学报, 2023, 49: 472-484.
doi: 10.3724/SP.J.1006.2023.23028
Xu T, Lyu Y J, Shao X W, Geng Y Q, Wang Y J. Effect of different times of spraying chemical regulator on the canopy structure and grain filling characteristics of high planting densities. Acta Agron Sin, 2023, 49: 472-484 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2023.23028
[8] Cao Y Y, Zhong Z J, Wang H, Wang H Y, Shen R X. Leaf angle: a target of genetic improvement in cereal crops tailored for high-density planting. Plant Biotechnol J, 2022, 20: 426-436.
doi: 10.1111/pbi.13780 pmid: 35075761
[9] Zhang L X, Luo Z L, Cui S R, Xie L, Yu J, Tang D Y, Ma X J, Mou Y. Residue of paclobutrazol and its regulatory effects on the secondary metabolites of Ophiopogon japonicas. Molecules 2019, 24: 3504.
[10] 姜龙, 曲金玲, 孙国宏, 白艳凤, 孟祥海, 姜宝杰, 孙远卓, 董韩骁骐. 矮壮素、烯效唑和多效唑对水稻倒伏及产量的影响. 中国林副特产, 2018, 153(2): 10-13.
Jiang L, Qu J L, Sun G H, Bai Y F, Meng X H, Jiang B J, Sun Y Z, Dong H X Q. Effects of chlormequat, uniconazole and paclobutrazol on the lodging and yield of rice. Fore By-Prod Spcia Chin, 2018, 153(2): 10-13 (in Chinese with English abstract).
[11] Zhao J H, Lai H J, Bi C, Zhao M J, Liu Y L, Li X D, Yang D Q. Effects of paclobutrazol application on plant architecture, lodging resistance, photosynthetic characteristics, and peanut yield at different single-seed precise sowing densities. Crop J, 2023, 11: 301-310.
doi: 10.1016/j.cj.2022.05.012
[12] Hedden P. The current status of research on gibberellin biosynthesis. Plant Cell Physiol, 2020, 61: 1832-1849.
doi: 10.1093/pcp/pcaa092 pmid: 32652020
[13] Zhou R, Yu M, Pharis R P. 16,17-dihydro gibberellin A5 competitively inhibits a recombinant Arabidopsis GA3 β-hydroxylase encoded by the GA4 gene. Plant Physiol, 2004, 135: 1000-1007.
[14] Evans L T, King R W, Mander L N, Pharis R P, Duncan K A. The differential effects of C-16,17-dihydro gibberellins and related compounds on stem elongation and flowering in Lolium temulentum. Planta, 1994, 193: 107-114.
[15] 李浩然, 李慧玲, 王红光, 李东晓, 李瑞奇, 李雁鸣. 冬小麦叶面积测算方法的再探讨. 麦类作物学报, 2018, 38: 455-459.
Li H R, Li H L, Wang H G, Li D X, Li R Q, Li Y M. Further study on the method of leaf area calculation in winter wheat. J Triticeae Crops, 2018, 38: 455-459 (in Chinese with English abstract).
[16] Wang C, Du Y M, Zhang J X, Ren J T, He P, Wei T, Xie W, Yang H K, Zhang J X. Effects of exposure of the leaf abaxial surface to direct solar radiation on the leaf anatomical traits and photosynthesis of soybean (Glycine max L.) in dryland farming systems. Photosynthetica, 2021, 59: 496-507.
doi: 10.32615/ps.2021.038
[17] 何雨桔, 刘琼, 王焜, 连霁雯, 蔡璐舟, 梁振宇, 樊高琼. 施氮量对不同株叶型小麦旗叶光合及籽粒灌浆特性的影响. 四川农业大学学报, 2022, 40: 707-713.
He Y J, Liu Q, Wang K, Lian J W, Cai L Z, Liang Z Y, Fan G Q. Effects of nitrogen application rate on flag leaf photosynthesis and grain filling characteristics of wheat with different leaf types. J Sichuan Agric Univ, 2022, 40: 707-713 (in Chinese with English abstract).
[18] Zhang J, Zhang Z, Neng F, Xiong S P, Wei Y H, Cao R, Wei Q R, Ma X M, Wang X C. Canopy light distribution effects on light use efficiency in wheat and its mechanism. Front Ecol Evol, 2022, 10: 1023117.
[19] 熊淑萍, 曹文博, 张志勇, 张捷, 高明, 樊泽华, 沈帅杰, 王小纯, 马新明. 行距和播种量对冬小麦冠层光合有效辐射垂直分布、生物量和籽粒产量的影响. 应用生态学报, 2021, 32: 1298-1306.
doi: 10.13287/j.1001-9332.202104.026
Xiong S P, Cao W B, Zhang Z Y, Zhang J, Gao M, Fan Z H, Shen S J, Wang X C, Ma X M. Effects of row spacing and sowing rate on vertical distribution of photosynthetically active radiation, biomass and grain yield in winter wheat canopy. Chin J Appl Ecol, 2021, 32: 1298-1306 (in Chinese with English abstract).
[20] 郑雪娇, 于振文, 张永丽, 石玉. 施氮量对测墒补灌小麦冠层不同层次光截获和干物质分布的影响. 应用生态学报, 2018, 29: 531-537.
doi: 10.13287/j.1001-9332.201802.024
Zheng X J, Yu Z W, Zhang Y L, Shi Y. Effects of nitrogen application rate on light interception and dry matter distribution at different layers in wheat canopy under supplemental irrigation based on measuring soil moisture. Chin J Appl Ecol, 2018, 29: 531-537 (in Chinese with English abstract).
[21] 汤亮, 朱相成, 曹梦莹, 曹卫星, 朱艳. 水稻冠层光截获、光能利用与产量的关系. 应用生态学报, 2012, 23: 1269-1276.
Tang L, Zhu X C, Cao M Y, Cao W X, Zhu Y. Relationships of rice canopy PAR interception and light use efficiency to grain yield. Chin J Appl Ecol, 2012, 23: 1269-1276 (in Chinese with English abstract).
[22] 高仁才, 陈松鹤, 马宏亮, 莫飘, 肖云, 张雪, 樊高琼. 秋闲期秸秆覆盖与氮肥减施对旱地冬小麦干物质积累、结实特性和产量的影响. 植物营养与肥料学报, 2022, 28: 426-439.
Gao R C, Chen S H, Ma H L, Mo P, Xiao Y, Zhang X, Fan G Q. Effects of straw mulching in autumn and reducing nitrogen application on dry matter accumulation, seed-setting characteristics and yield of dryland winter wheat. J Plant Nutr Fert, 2022, 28: 426-439 (in Chinese with English abstract).
[23] Yao H S, Zhang Y L, Yi X P, Zuo W Q, Lei Z Y, Sui L L, Zhang W F. Characters in light-response curves of canopy photosynthetic use efficiency of light and N in responses to plant density in field-grown cotton. Field Crops Res, 2017, 203: 192-200.
[24] 张玲丽, 王辉, 孙道杰, 冯毅. 高产小麦品种冠层形态结构及其与产量性状的关系. 西北植物学报, 2004: 1211-1215.
Zhang L L, Wang H, Sun D J, Feng Y. Canopy morphology structure and its correlation with yield characters of high-yield wheat cultivars. Acta Bot Bor-Occid Sin, 2004: 1211-1215 (in Chinese with English abstract).
[25] Liu Y, Liao Y C, Liu W Z. High nitrogen application rate and planting density reduce wheat grain yield by reducing filling rate of inferior grain in middle spikelets. Crop J, 2021, 9: 412-426.
doi: 10.1016/j.cj.2020.06.013
[26] 颜为, 李芳军, 徐东永, 杜明伟, 田晓莉, 李召虎. 行距与氮肥或甲哌鎓化控对棉花冠层结构、温度和相对湿度的影响. 作物学报, 2021, 47: 1654-1665.
doi: 10.3724/SP.J.1006.2021.04167
Yan W, Li F J, Xu D Y, Du M W, Tian X L, Li Z H. Effects of row spacings and nitrogen or mepiquat chloride application on canopy architecture, temperature and relative humity in cotton. Acta Agron Sin, 2021, 47: 1654-1665 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2021.04167
[27] Liu T, Wang Z, Cai T. Canopy apparent photosynthetic characteristics and yield of two spike-type wheat cultivars in response to row spacing under high plant density. PLoS One, 2016, 11: e0148582.
[28] 陈晓光, 王振林, 彭佃亮, 李勇, 蔡铁, 王平, 陈二影. 种植密度与喷施多效唑对冬小麦抗倒伏能力和产量的影响. 应用生态学报, 2011, 22: 1465-1470.
Chen X G, Wang Z L, Peng D L, Li Y, Cai T, Wang P, Chen E Y. Effects of planting density and spraying PP333 on winter wheat lodging-resistance and grain yield. Chin J Appl Ecol, 2011, 22: 1465-1470 (in Chinese with English abstract).
[29] 杨阳, 蒯婕, 吴莲蓉, 刘婷婷, 孙盈盈, 左青松, 周广生, 吴江生. 多效唑处理对直播油菜机械收获相关性状及产量的影响. 作物学报, 2015, 41: 938-945.
doi: 10.3724/SP.J.1006.2015.00938
Yang Y, Kuai J, Wu L R, Liu T T, Sun Y Y, Zuo Q S, Zhou G S, Wu J S. Effects of paclobutrazol on yield and mechanical harvest characteristics of winter rapeseed with direct seeding treatment. Acta Agron Sin, 2015, 41: 938-945 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2015.00938
[30] 吴刚, 赵强, 谢佳, 张启越, 占东霞, 田阳青, 李欣欣. 植物生长调节剂复配不同叶面肥对棉花干物质积累及产量品质的影响. 新疆农业科学, 2023, 60: 2646-2652.
doi: 10.6048/j.issn.1001-4330.2023.11.006
Wu G, Zhao Q, Xie J, Zhang Q Y, Zhan D X, Tian Y Q, Li X X. Effects of plant growth regulator combined with different leaf fertilizer on the accumulation of dry material and yield quality in cotton. Xinjiang Agric Sci, 2023, 60: 2646-2652 (in Chinese with English abstract).
doi: 10.6048/j.issn.1001-4330.2023.11.006
[31] 艾代龙, 雷芳, 邹乔生, 贺鹏, 杨洪坤, 樊高琼. 秸秆覆盖与施氮对丘陵旱地小麦根系构型改善及H+、NO3-吸收与利用的影响. 中国农业科学, 2023, 56: 4192-4207.
doi: 10.3864/j.issn.0578-1752.2023.21.005
Ai D L, Lei F, Zou Q S, He P, Yang H K, Fan G Q. Effects of straw mulching and nitrogen application on the improvement of wheat root architecture and the absorption and utilization of H+ and NO3- in hilly dry land. Sci Agric Sin, 2023, 56: 4192-4207 (in Chinese with English abstract)
[32] 陶有凤, 蒲石林, 周伟, 邓飞, 钟晓媛, 秦琴, 任万军. 西南弱光地区机插杂交籼稻“减穴稳苗”栽培的群体冠层质量特征. 中国农业科学, 2021, 54: 4969-4983.
doi: 10.3864/j.issn.0578-1752.2021.23.004
Tao Y F, Pu S L, Zhou W, Deng F, Zhong X Y, Qin Q, Ren W J. Canopy population quality characteristics of mechanical transplanting hybrid indica rice with “reducing hills and stabilizing basic-seedlings” in low-light region of Southwest China. Sci Agric Sin, 2021, 54: 4969-4983 (in Chinese with English abstract).
[1] ZHANG Gui-Qin, WANG Hong-Zhang, GUO Xin-Song, ZHU Fu-Jun, GAO Han, ZHANG Ji-Wang, ZHAO Bin, REN Bai-Zhao, LIU Peng, REN Hao. Effects of organic material inputs on soil physicochemical properties and summer maize yield formation in coastal saline-alkali land [J]. Acta Agronomica Sinica, 2024, 50(9): 2323-2334.
[2] ZHANG Qi-Qi, CHEN Jie-Chang, KUAI Jie, WANG Bo, WANG Jing, XU Zheng-Hua, ZHAO Jie, ZHAO Si-Ming, JIA Cai-Hua, ZHOU Guang-Sheng. Effect of high density planting on the quality of cold pressed rapeseed oil [J]. Acta Agronomica Sinica, 2024, 50(9): 2358-2370.
[3] ZHANG Zhen, HE Jian-Ning, SHI Yu, YU Zhen-Wen, ZHANG Yong-Li. Effects of row spacing and planting patterns on photosynthetic characteristics and yield of wheat [J]. Acta Agronomica Sinica, 2024, 50(9): 2396-2407.
[4] YU Hai-Long, WU Wen-Xue, PEI Xing-Xu, LIU Xiao-Yu, DENG Gen-Wang, LI Xi-Chen, ZHEN Shi-Cong, WANG Jun-Sen, ZHAO Yong-Tao, XU Hai-Xia, CHENG Xi-Yong, ZHAN Ke-Hui. Transcriptome sequencing and genome-wide association study of wheat stem traits [J]. Acta Agronomica Sinica, 2024, 50(9): 2187-2206.
[5] XU Yi-Fan, XU Cai-Long, LI Rui-Dong, WU Zong-Sheng, HUA Jian-Xin, YANG Lin, SONG Wen-Wen, WU Cun-Xiang. Deep side fertilization improved soybean yield by optimizing leaf function and nitrogen accumulation [J]. Acta Agronomica Sinica, 2024, 50(9): 2335-2346.
[6] YANG Yu-Chen, JIN Ya-Rong, LUO Jin-Chan, ZHU Xin, LI Wei-Hang, JIA Ji-Yuan, WANG Xiao-Shan, HUANG De-Jun, HUANG Lin-Kai. Identification and expression analysis of the WD40 gene family in pearl millet [J]. Acta Agronomica Sinica, 2024, 50(9): 2219-2236.
[7] LIU Zhi-Peng, GOU Zhi-Wen, CHAI Qiang, YIN Wen, FAN Zhi-Long, HU Fa-Long, FAN Hong, WANG Qi-Ming. Effect of green manure on wheat and maize yields in diversified cropping patterns in an arid irrigated agricultural area [J]. Acta Agronomica Sinica, 2024, 50(9): 2415-2424.
[8] SUN Zhao-Hua, REN Hao, WANG Hong-Zhang, WANG Zi-Qiang, YAO Hai-Yan, XIN Ai-Mei, ZHAO Bin, ZHANG Ji-Wang, REN Bai-Zhao, LIU Peng. Effects of foliar silicon sprays on leaf photosynthetic performance and grain yield of summer maize in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2024, 50(9): 2383-2395.
[9] PENG Jie, XIE Xiao-Qi, ZHANG Zhao, YAO Xiao-Fen, QIU Shen, CHEN Dan-Dan, GU Xiao-Na, WANG Yu-Jie, WANG Chen-Chen, YANG Guo-Zheng. Relationship between cotton yield and canopy microenvironment under summer direct seeding [J]. Acta Agronomica Sinica, 2024, 50(9): 2371-2382.
[10] HUANG Lin-Yu, ZHANG Xiao-Yue, LI Hao, DENG Mei, KANG Hou-Yang, WEI Yu-Ming, WANG Ji-Rui, JIANG Yun-Feng, CHEN Guo-Yue. Mapping of QTL for adult plant stripe rust resistance genes in a Sichuan wheat landrace and the evaluation of their breeding effects [J]. Acta Agronomica Sinica, 2024, 50(9): 2167-2178.
[11] LIU Chen, WANG Kun-Kun, LIAO Shi-Peng, YANG Jia-Qun, CONG Ri-Huan, REN Tao, LI Xiao-Kun, LU Jian-Wei. Effects of nitrogen fertilizer application levels on yield and nitrogen absorption and utilization of oilseed rape under maize-oilseed rape and rice-oilseed rape rotation fields [J]. Acta Agronomica Sinica, 2024, 50(8): 2067-2077.
[12] GAO Wei-Dong, HU Chen-Zhen, ZHANG Long, ZHANG Yan-Yan, ZHANG Pei-Pei, YANG De-Long, CHEN Tao. Cloning and functional analysis of ubiquitin-conjugating enzymes TaUBC16 gene in wheat [J]. Acta Agronomica Sinica, 2024, 50(8): 1971-1988.
[13] LIANG Jin-Yu, YIN Jia-De, HOU Hui-Zhi, XUE Yun-Gui, GUO Hong-Juan, WANG Shuo, ZHAO Qi-Zhi, ZHANG Xu-Cheng, XIE Jun-Hong. Effects of deep fertilization on ecological stoichiometric characteristics and photosynthetic carbon assimilation of flag leaves of spring wheat under drought conditions [J]. Acta Agronomica Sinica, 2024, 50(8): 2078-2090.
[14] LOU Hong-Xiang, HUANG Xiao-Yu, JIANG Meng, NING Ning, BIAN Meng-Lei, ZHANG Lei, LUO Dong-Xu, QIN Meng-Qian, KUAI Jie, WANG Bo, WANG Jing, ZHAO Jie, XU Zheng-Hua, ZHOU Guang-Sheng. Optimal allocation of sowing date and sowing rate of late-sowing rapeseed in the Yangtze River Basin [J]. Acta Agronomica Sinica, 2024, 50(8): 2091-2105.
[15] YANG Qi-Rui, LI Lan-Tao, ZHANG Duo, WANG Ya-Xian, SHENG Kai, WANG Yi-Lun. Effect of phosphorus application on yield, quality, light temperature physiological characteristics, and root morphology in summer peanut [J]. Acta Agronomica Sinica, 2024, 50(7): 1841-1854.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!