Welcome to Acta Agronomica Sinica,

Most Down Articles

    Published in last 1 year | In last 2 years| In last 3 years| All| Most Downloaded in Recent Month| Most Downloaded in Recent Year|

    Most Downloaded in Recent Month
    Please wait a minute...
    For Selected: Toggle Thumbnails
    Effects of seeding rates and panicle nitrogen fertilizer rates on grain yield and quality in good taste rice cultivars under direct sowing
    CHEN Yun, LI Si-Yu, ZHU An, LIU Kun, ZHANG Ya-Jun, ZHANG Hao, GU Jun-Fei, ZHANG Wei-Yang, LIU Li-Jun, YANG Jian-Chang
    Acta Agronomica Sinica    2022, 48 (3): 656-666.   DOI: 10.3724/SP.J.1006.2022.12012
    Abstract51)   HTML1)    PDF(pc) (1053KB)(157)       Save

    Seeding rate is one of the key factors affecting grain yield under direct sowing in rice, but there are fewer studies of its influence on grain yield and quality in good taste rice cultivars (GTRC). The application of panicle fertilizer is an important measure for high-yielding cultivation in rice production, however, the effects of panicle fertilizer rates on grain yield and quality in GTRC is still unclear. In this study, three representative GTRC (Suxiangjing 3, Nanjing 5055, and Nanjing 9108) in Jiangsu province were used as materials, and the effects of seeding rates (60, 90, 120, 150, and 180 kg hm-2) and the effect of nitrogen (N) application as panicle fertilizer on grain yield and quality were investigated under direct sowing when the rowing spacing was fixed at 25 cm. The main results were as follows: (1) The yields of Suxiangjing 3, Nanjing 5055, and Nanjing 9108 all increased first and then decreased with the increase of seeding rates. The optimum seeding rates for the high yield of the three rice cultivars were 130.2-136.5 kg hm-2, 118.3-119.3 kg hm-2, and 90.0-96.4 kg hm-2, respectively. Rice processing quality was negatively correlated with the seeding rates to different extents, while chalky grain rate, chalkiness, protein content, and setback was significantly or extremely significantly positively correlated with the seeding rates. Gel consistency, amylose content, taste value, and breakdown were significantly or extremely significantly negatively correlated with seeding rates. (2) Under the optimum seeding rates with the high yield, compared with conventional panicle N application rate, halving the panicle N application had no significant effects on the yields of Nanjing 5055 and Nanjing 9108, but it could significantly improve the appearance quality and taste value. The above results indicated that the optimum seeding rate in GTRC under direct sowing varied with cultivars. Excessive seeding rate would decrease the processing quality, appearance quality, and taste value. Appropriately reducing the amount of N application as panicle fertilizer was beneficial to further improve the appearance and taste quality in GTRC under direct sowing.

    Table and Figures | Reference | Related Articles | Metrics
    Phylogeny of wild Setaria species and their utilization in foxtail millet breeding
    ZHAO Mei-Cheng, DIAO Xian-Min
    Acta Agronomica Sinica    2022, 48 (2): 267-279.   DOI: 10.3724/SP.J.1006.2022.14047
    Abstract250)   HTML33)    PDF(pc) (526KB)(203)       Save

    Foxtail millet (Setaria italica) was domesticated from the wild ancestor, green foxtail (S. viridis), about ten thousand years ago in China. Foxtail millet belongs to Setaria genus, which includes about 125 species of panicoid grasses worldwide, and 15 species of them in China varied from diploid to octoploid. Currently, six genomes in the Setaria genus have been identified by GISH (genomic in situ hybridization). Molecular phylogenetic analyses show that the Setaria genus is polyphyletic, in line with the characteristic of diversified genomes. Phylogeny of Setaria genus reveal that foxtail millet is most closely related with green foxtail, and then S. fabrei and S. verticillata, and that A genome of S. italica/S. viridis appears to be closer to B genome of S. adhaeran and C genome of S. grisebachii than the other known genomes. For utilization of wild species resources, foxtail millet breeders have successfully introduced the naturally mutated herbicide-resistant genes from green foxtail into cultivars, resulting in the herbicide-resistant foxtail millet variety. Here, we review the recent advances of wild species of foxtail millet in species classification, genome constitution and phylogenetic relationships, and highlight the utility of the wild species resources for breeding and domestication of foxtail millet. We also discuss the potentials of the wild Setaria species in discovery of domestication genes and breeding in foxtail millet in the future.

    Table and Figures | Reference | Related Articles | Metrics
    CRISPR/Cas9-mediated editing of the thermo-sensitive genic male-sterile gene TMS5 in rice
    CHEN Ri-Rong,ZHOU Yan-Biao,WANG Dai-Jun,ZHAO Xin-Hui,TANG Xiao-Dan,XU Shi-Chong,TANG Qian-Ying,FU Xing-Xue,WANG Kai,LIU Xuan-Ming,YANG Yuan-Zhu
    Acta Agronomica Sinica    2020, 46 (8): 1157-1165.   DOI: 10.3724/SP.J.1006.2020.92059
    Abstract518)   HTML28)    PDF(pc) (25179KB)(469)       Save

    Thermo-sensitive genic male-sterile (TGMS) gene tms5 is most widely used in the two-line hybrid breeding system in China. To develop novel rice thermo-sensitive male sterile lines, we knocked out the TMS5 genes of six elite japonica and four indica rice varieties by using CRISPR/Cas9 gene editing technology. By analyzing the critical sterility-inducing temperature (CIST) of the newly TGMS lines, it was found that the CIST of japonica TGMS lines ZG75S, CYGS, YG0618S, ZG07S, T0361S, and 7679S were between 28°C and 32°C, the CIST of indica TGMS lines 2537S, 6150S and 6379S were between 24°C and 28°C, and the CIST of indica TGMS line 1109S was lower than 23.5°C. These results indicated that the CIST of tms5 mutant from different genetic background materials was different. The TGMS lines with lower CIST could be obtained by knocking out the TMS5 from different genetic background materials. A hybrid rice combination 1109S/8048 had high quality and high yield. The yield of 1109S/8048 was 13.1% higher than that of Fengliangyou 4. The creation of the TGMS 1109S and the high-yield cross combination 1109S/8048 provides a new way for high-yield breeding.

    Table and Figures | Reference | Related Articles | Metrics
    Genome-wide characterization and expression analysis of Dof family genes in sweetpotato
    JIN Rong, JIANG Wei, LIU Ming, ZHAO Peng, ZHANG Qiang-Qiang, LI Tie-Xin, WANG Dan-Feng, FAN Wen-Jing, ZHANG Ai-Jun, TANG Zhong-Hou
    Acta Agronomica Sinica    2022, 48 (3): 608-623.   DOI: 10.3724/SP.J.1006.2022.14004
    Abstract52)   HTML0)    PDF(pc) (4657KB)(100)       Save

    DNA-binding One Zinc Finger (Dof) transcription factors are widely involved in various life activities of plants. Forty-six IbDof genes from sweetpotato cv. Taizhong 6 with a highly conserved Dof domain structured as a C2C2-type zinc finger were identified and named from IbDof1 to IbDof46 according to their position on the chromosomes. IbDof family could be divided into four subgroups (A-D), which shared the similar motifs and gene structures. Motif 1 and Motf 2 occurred in all of the identified IbDofs, Motif 5 and Motif 9 only occurred in subgroup A, and Motif 6-Motif 8 and Motif 10 only occurred in subgroup D. Twelve segment duplicated gene pairs and five tandem duplicated gene pairs of IbDofs (IbDof2/IbDof3, IbDof12/IbDof13, IbDof9/IbDof10, IbDof28/IbDof29, and IbDof32/IbDof33) contributed to the expansion of IbDof family in sweetpotato. The average divergence times of segmental duplication gene pairs and tandem duplicated gene pairs seemed to have emerged 35.22 MYA and 1.86 MYA, and the Ka/Ks ratios of the paralogous IbDofs were range from 0.07 (IbDof12/IbDof13) to 0.68 (IbDof6/IbDof25). Tirty-eight orthologous IbDof gene pairs between sweetpotato and their wild relative species Ipomoea trifida were involved in duplicated genomic blocks based on synteny analysis. Transcriptome analysis indicated different subgroups expressed specifically in various tissues, and IbDofs in the same subgroup also revealed different expression tends. Various hormones and stresses response element were identified in the promoters of IbDof genes, and qRT-PCR demonstrated specific IbDof genes responded to various environmental stresses, including cold, drought, salt, and H2O2. Most IbDof genes were regulated by cold treatment; IbDof10 and IbDof14 were up-regulated by drought treatment; IbDof-2, -14, -37, -41, -43 were up regulated by high salt stress; and IbDof-8, -10, -25, -41 were up regulated by H2O2 treatment. In summary, our result indicated that IbDof family genes coordinately regulated the growth and development of sweetpotato and been involved in the various abiotic stresses process.

    Table and Figures | Reference | Related Articles | Metrics
    Advances of QTL mapping for seed size related traits in peanut
    HUANG Li, CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang
    Acta Agronomica Sinica    2022, 48 (2): 280-291.   DOI: 10.3724/SP.J.1006.2022.14046
    Abstract239)   HTML17)    PDF(pc) (851KB)(269)       Save

    Peanut is an important oil and economic crop in China. Currently, the domestic production of peanut remains far below the needs of consumers. Thus, further improving the yield per unit area is a crucial approach to meet the rising market demand. Seed size related traits are important agronomic traits in peanut, fundamentally contributing to improving yield per unit area. This review summarized the research progress on the regulatory pathways of seed size in plants, molecular markers, genetic linkage map construction, and QTL mapping of seed size related traits in peanut. We discussed the frontline challenges and opportunities for the coming researches of peanut seed related traits and the perspectives of yield improvement in peanut.

    Table and Figures | Reference | Related Articles | Metrics
    Identification of salt tolerance and screening of salt tolerant germplasm of mungbean ( Vigna radiate L.) at seedling stage
    HU Liang-Liang, WANG Su-Hua, WANG Li-Xia, CHENG Xu-Zhen, CHEN Hong-Lin
    Acta Agronomica Sinica    2022, 48 (2): 367-379.   DOI: 10.3724/SP.J.1006.2022.04283
    Abstract126)   HTML17)    PDF(pc) (1348KB)(186)       Save

    Soil salinization has become one of the important factors affecting agricultural production in China. It is of great significance to screen germplasm resources of mungbean [Vigna radiate (L.) Wilczek] for the utilization of salinized land. In the present study, the seedlings of 346 domestic and foreign collections of mungbean were exposed to 150 mmol L -1 NaCl. To evaluate the salt-tolerance of different mungbean genotypes at seedling stage, 12 indicators were calculated, including plant height, fresh weight of above-ground part, fresh weight of root, dry weight of above-ground part, dry root weight, root length, and root volume. Salt tolerance of each sample was comprehensively evaluated and classified by principal component analysis, membership function analysis, salt tolerance comprehensive evaluation, and cluster analysis; and the regression equation of salt tolerance prediction was established by stepwise regression analysis. The results revealed that there were significant differences between treatment group and control group in each trait evaluation index, and the salt tolerance coefficients of the 12 indicators were correlated to some content. Combining the classification of salt damage symptoms and the comprehensive evaluation results of salt tolerance, 26 mungbean germplasms with high salt tolerance, 65 germplasms with high salt tolerance, 74 germplasms with salt sensitive, and 18 germplasms with extremely salt sensitive were selected at seedling stage. Among them, 10 varieties such as C04125 from Jiangxi and C06310 from the Philippines had the strongest salt tolerance, which could be used as excellent resources for mungbean salt tolerance breeding. Above-ground fresh weight, root fresh weight, root dry weight, root length, root volume, and root branch number could be used to predict salt tolerance of mungbean at seedling stage.

    Table and Figures | Reference | Related Articles | Metrics
    Dissecting the genetic architecture of maize kernel size based on genome-wide association study
    QU Jian-Zhou, FENG Wen-Hao, ZHANG Xing-Hua, XU Shu-Tu, XUE Ji-Quan
    Acta Agronomica Sinica    2022, 48 (2): 304-319.   DOI: 10.3724/SP.J.1006.2022.13002
    Abstract152)   HTML18)    PDF(pc) (4960KB)(148)       Save

    Kernel size related traits are one of the important compounds of yield, and they are also complex quantitative traits regulated by multiple genes. Mining the key regulatory genes of maize kernel size related traits will help to improve the yield. In this study, 212 excellent maize inbred lines were selected as materials. The kernel length, kernel width, and kernel thickness were measured in 2018 and 2019, respectively, and we performed genome-wide association study (GWAS) based on 73,006 single nucleotide polymorphic (SNP) markers uniformly distributed in maize genome. Based on the FarmCPU algorithm, 47 SNP markers associated with kernel size related traits were detected on 10 chromosomes in maize. Combined with the public dynamic spatio-temporal transcriptional data of kernel development of B73 maize inbred line, 58 candidate genes related to kernel size were detected in the linkage disequilibrium (LD) region marked by significant SNP. The proteins encoded by candidate genes interacted with multiple proteins and participated in and regulated many biological processes closely related to kernel development. These results provide a new reference for understanding the molecular regulation mechanism of maize kernel development, improving kernel size and increasing crop yield.

    Table and Figures | Reference | Related Articles | Metrics
    Identification, expression profile of soybean PIN-Like (PILS) gene family and its function in symbiotic nitrogen fixation in root nodules
    DONG Yan-Kun, HUANG Ding-Quan, GAO Zhen, CHEN Xu
    Acta Agronomica Sinica    2022, 48 (2): 353-366.   DOI: 10.3724/SP.J.1006.2022.14006
    Abstract108)   HTML17)    PDF(pc) (8803KB)(114)       Save

    Plant hormone auxin plays a vital role in the growth and development of plants. Auxin homeostasis and concentration gradient establishment control the polar formation of almost all organs. The synthesis, transportation, perception, and metabolic degradation of auxin in specific cells establish a concentration gradient of auxin in accordance with organ development. In legumes, roots interact with soil microorganisms to form a special organ called nodules, which is used for biological nitrogen fixation. However, the function of auxin homeostasis control of biological nitrogen fixation is unknown. Studies showed that PIN-Like (PILS) proteins in Arabidopsis helped to regulate intracellular auxin homeostasis and mediate auxin signal transmission in the downstream nucleus. In this study, 19 PILS family genes (GmPILSs) were identified in soybean genome and distributed unevenly on 10 chromosomes of soybean. GmPILSs exhibited a variety of expression patterns in nine tissue parts of soybean, and had obvious specificity of tissue expression. GmPILS1e and GmPILS1f were enriched and expressed in the rhizobia region, and the expression of GmPILS1e and GmPILS1f in nodules was down-regulated by artificial microRNA interference (amiRNAi), resulting in the increase of nitrogenase activity in the nodules. However, the overexpression of GmPILS1f leaded to the decrease nitrogenase activity in root nodules, GmPILS1e and GmPILS1f might participate in the regulation of soybean nitrogenase activity. These results lay the foundation for further analysis of the function and mechanism of soybean GmPILS family genes, and also provide valuable genetic resources for the application of nodulation and nitrogen fixation in agricultural breeding.

    Table and Figures | Reference | Related Articles | Metrics
    Effect of water and nitrogen reduction on main photosynthetic physiological parameters of film-mulched maize no-tillage rotation wheat
    XU Long-Long, YIN Wen, HU Fa-Long, FAN Hong, FAN Zhi-Long, ZHAO Cai, YU Ai-Zhong, CHAI Qiang
    Acta Agronomica Sinica    2022, 48 (2): 437-447.   DOI: 10.3724/SP.J.1006.2022.01093
    Abstract97)   HTML6)    PDF(pc) (1747KB)(116)       Save

    The effect of no-tillage combined with water and nitrogen reduction of mulching maize on the stability and increase of wheat yield has been verified, but the research of the photosynthetic physiological mechanism of its formation is still relatively weak. From 2018 to 2020, the split zone design was adopted, and two farming methods of film-mulched corn no-tillage (NT) and traditional tillage (CT) was arranged with two irrigation levels of traditional irrigation (I2, 2400 m 3 hm ?2) and traditional irrigation reduce 20% (I1, 1920 m 3 hm ?2) and three nitrogen application levels of 225 kg hm ?2 (N3), 180 kg hm ?2 (N2) and 135 kg hm ?2 (N1). The results showed that farming measures and nitrogen application level had significant effects on wheat leaf area index, photosynthetic potential, SPAD value, and photosynthetic rate; irrigation level had significant effects on photosynthetic rate. During the whole growth periods, compared with CT, NT increased wheat leaf area index, photosynthetic potential, SPAD value, and photosynthetic rate by 14.5%-44.1%, 13.2%-16.3%, 7.4%-9.0%, and 14.5%-24.2%, respectively; Compared with I2, the photosynthetic rate of wheat I1 decreased by 6.5%-13.6%. Compared with N3, the leaf area index, photosynthetic potential, SPAD value, and photosynthetic rate of N1 decreased by 6.4%-13.6%, 7.5%-12.7%, 6.0%-10.2%, and 7.5%-17.5%, respectively. There was no significant difference between N2 and N3. Cultivation measures, nitrogen application level, and irrigation level all had significant effects on dry matter accumulation and grain yield in wheat. Compared with CT, NT increased by 13.4%-16.5% and 9.0%-13.4%; Compared with I2, I1 decreased by 6.5%-6.7% and 4.3%-7.4%; Compared with N3, the dry matter accumulation and grain yield of N1 decreased by 10.0%-11.9% and 12.6%-19.4%, respectively, and there was no significant difference between N2 and N3. Correlation matrix analysis showed that the combined water and nitrogen reduction of no-tillage maize mulching could delay the decrease of wheat SPAD value, prolonged the photosynthetic time, and increased the photosynthetic potential and photosynthetic rate of wheat to increase yield.

    Table and Figures | Reference | Related Articles | Metrics
    Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system
    YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu
    Acta Agronomica Sinica    2022, 48 (2): 423-436.   DOI: 10.3724/SP.J.1006.2022.11017
    Abstract99)   HTML11)    PDF(pc) (968KB)(112)       Save

    It is of great significance that exploring the characteristics of wheat-maize varieties combination suitable for stress resistance, high yield, and stable yield under the “double delay” system and their matching properties with natural resources, for ensuring the high yield and high efficiency production of winter wheat and summer maize in this region. In this study, field experiments were conducted from 2017 to 2019. Eight winter wheat and eight summer maize varieties were the main varieties in the North China Plain under winter wheat-summer maize “double delay” system with different irrigation treatments. Based on the analysis and evaluation of water use efficiency, grain filling characteristics, growth process, annual light, temperature, and water use efficiency, etc., the characteristics of wheat-maize varieties combination and resource use efficiency under the “double delay” system of winter wheat and summer maize were explored. The results suggested that among the tested wheat varieties, the yields of Jimai 325, Shimai 15, Nongda 3486, and Jimai 22 under conventional water-saving irrigation and rain-fed mode were higher than the average yield of the tested varieties druing the two growing seasons. In addition, the drought resistance index of Jimai 325 and Shimai 15 were higher than that of Jimai 22. Meanwhile, the grain-filling rate, grain number per spike, grain weight, and high stability coefficients of Jimai 22, Jimai 325, and Shimai 15 were higher than the mean of the tested varieties under different irrigation modes. Among the tested maize variaties, the yield and high stability coefficients of Denghai 605, Weike 702, MC670, and Nonghua 816 were all higher than the means of the tested varieties. The grain-filling rate of MC670, Denghai 605, and Xianyu 335 were higher than the means of the tested varieties during the two growing seasons. While, Dika 517 and Xianyu 335 had the lowest grain water content at harvest stage but the highest average dehydration rate among the tested varieties. Based on the comprehensive analysis of the yield and yield stability, drought resistance, grain-filling properties, and dehydration characteristics, the variety combination of Jimai 325-MC670 was selected with the highest annual yield and resource use efficiency. Compared with the local control combination of Jimai 22-Zhengdan 958, the annual yield increased by 17.2% and 17.9%, the light, temperature and irrigation water use efficiency increased by 18.6% and 20.0%, 18.1% and 18.9%, 17.4% and 18.1%, and increased economic benefit 8800 Yuan hm -2 and 9600 Yuan hm -2, respectively; to fit the whole-process mechanized management mode of wheat-maize double cropping system, maize could use varieties with fast dehydration rate and low grain water content when harvest, such as Dika 517 or Xianyu 335. Compared with the current local combination of Jimai 22-Zhengdan 958, this combination could increase the annual yield by 4.7% and 14.4%, and increase the light, temperature, and irrigation water use efficiency by 5.6% and 16.3%, 4.7% and 15.4%, 5.0% and 14.6%, and increased economic benefit by 2080 Yuan hm -2 and 7080 Yuan hm -2, respectively. In summary, optimizing the wheat-maize variety combination under the “double delay” cropping system can further improve the annual yield and resource use efficiency synergistically compared with the local staple wheat-maize variety combination.

    Table and Figures | Reference | Related Articles | Metrics
    Evaluations of winter wheat late frost damage under different water based on principal component-cluster analysis
    WANG Yang-Yang, HE Li, REN De-Chao, DUAN Jian-Zhao, HU Xin, LIU Wan-Dai, GU Tian-Cai, WANG Yong-Hua, FENG Wei
    Acta Agronomica Sinica    2022, 48 (2): 448-462.   DOI: 10.3724/SP.J.1006.2022.11003
    Abstract102)   HTML10)    PDF(pc) (1151KB)(123)       Save

    To investigate the effect of low temperature at jointing stage on wheat physiological metabolism under different water conditions, a comprehensive physiological index is constructed to accurately evaluate the degree of freezing injury, which is of great significance to agricultural loss reduction, efficiency increase and macro management. Irrigation (W1) and no irrigation (W0) treatments were carried out one week before low temperature treatment using the weak-spring Yanzhan 4110 and Lankao 198, semi-winter Zhengmai 366 and Fengdecun 21 as the experimental materials. At the female and male ear differentiation stages, potted wheat was moved to the low temperature simulation room for low temperature treatment with six levels of normal (CK), -2℃ (T1), -4℃ (T2), -6℃ (T3), -8℃ (T4), and -10℃ (T5), respectively. The physiological indexes and fluorescence parameters were measured on the second day after treatment, and wheat yield was harvested at maturity stage. The results revealed that different varieties, water and low temperature stress, and their interactions had significant effects on wheat physiological indexes and fluorescence parameters at jointing stage. With the aggravation of low temperature stress, leaf water content, chlorophyll a content and fluorescence parameters qp, Fv/Fm, and Fv/Fo showed the continuous downward trends, the contents of soluble protein, proline, soluble sugar, and SOD activity first increased and then decreased, but the content of MDA demonstrated the opposite trend. Irrigation treatment alleviated the influence of low temperature stress on plant physiological metabolism, and the effect of low temperature on semi-winter varieties was relatively lower. Four independent comprehensive indexes were transformed by the principal component analysis, which reflected 88.55% of the original information, and the physiological comprehensive index of freezing injury (FICEI) was constructed. The depth of color in heat map indicated the darker the color, the greater the performance degree of indicators. According to the FIPCI value, the freezing injury was divided into five levels, which was consistent with the yield loss rate. Especially under T3 treatment, the yield loss rate of each variety reduced by 30.4%-44.0% under no irrigation, reduced by 21.0%-29.2% under irrigation treatment. Under the same irrigation condition, yield loss rate of different varieties was LK198>YZ4110>ZM366>FDC21, and the yield loss rate of semi-winter varieties was lower than that of weak spring varieties. According to the results of heat map clustering and the yield of each treatment, the yield loss rate was less than 10% for CK and T1, 10%-30% for W0T2, W1T2 and W1T3, 30%-50% for W0T3 and W1T4, more than 50% for W0T4, W0T5 and W1T5. Irrigating before low temperature was conducive to alleviating the damage caused by low temperature stress and reducing the yield loss. Physiological comprehensive freezing injury index and model constructed by principal component-cluster analysis can accurately evaluate the degree of wheat late frost damage, and provide scientific basis for yield recovery and decision-making management after disaster.

    Table and Figures | Reference | Related Articles | Metrics
    Phenotypic and genetic analyses of a rice mutant eed1 with defected embryo and endosperm development
    YANG Jin, BAI Ai-Ning, BAI Xue, CHEN Juan, GUO Lin, LIU Chun-Ming
    Acta Agronomica Sinica    2022, 48 (2): 292-303.   DOI: 10.3724/SP.J.1006.2022.12013
    Abstract123)   HTML21)    PDF(pc) (9466KB)(93)       Save

    A stably inherited embryo and endosperm defective mutant, named embryo and endosperm defective 1 (eed1), was obtained from the mutant population of rice Zhonghua 11, generated by ethylmethane sulfonate (EMS). The 1000-grain weight, grain length, grain width, grain thickness, germination rate, total starch, amylose, and storage protein contents in eed1 mature caryopses were significantly decreased compared with wild type. In eed1, the caryopses were shrunken and the endosperm was opaque. Scanning electron microscopy observation revealed that starch granules in eed1 endosperm cells were loosely packed, in single, disperse and spherical forms. The embryo of eed1 was abnormal, and some caryopses showed no sign of embryonic differentiation. Most genes involved in biosynthesis of starch and storage protein were down-regulated in eed1 endosperm by qRT-PCR. EED1 was mapped in an interval of 672 kb on chromosome 9 using a F2 population derived from a cross between eed1 and Nanjing 6. The region contained 114 open reading frames. This study lays a foundation for further studying EED1 gene in regulating development of rice embryo and endosperm.

    Table and Figures | Reference | Related Articles | Metrics
    On the green and light-simplified and mechanized cultivation of cotton in a cotton-based double cropping system
    ZHENG Shu-Feng, LIU Xiao-Ling, WANG Wei, XU Dao-Qing, KAN Hua-Chun, CHEN Min, LI Shu-Ying
    Acta Agronomica Sinica    2022, 48 (3): 541-552.   DOI: 10.3724/SP.J.1006.2022.14090
    Abstract47)   HTML2)    PDF(pc) (928KB)(61)       Save

    There are many prominent problems or challenges in the traditional cotton production under the cotton-based double cropping system, which include complex planting pattern and cumbersome cultivation technology, long growth period, low degree of mechanization, heavy inputs of labor, chemical fertilizers and pesticides, and the resulted low economic benefits. After nearly 10 years of researches and practice, China has established and applied the green and light-simplified and mechanized cultivation technology of cotton in a cotton-based double cropping system, namely the green production with reduced chemical fertilizers and pesticides, light and simplified field management, and mechanized production by using mechanics instead of labors. Based on the author's research and relevant research progress at home and abroad, this paper summarizes and reviews the basic concept, the technical route, the key technologies and theoretical basis of the green, light and mechanized cultivation of cotton under the cotton-based double cropping system. The core contents of the technology are one-time sowing by machinery (direct one seed precision sowing by machinery under no-tillage instead of cotton seedling transplanting, simultaneous sowing of seed and fertilizer, no thinning and no seedling replenishment), no pruning (avoid removal of vegetative branches and manual topping through close planting and chemical regulation to shape reasonable plant type and maturity), and one-time mechanical harvesting (establish a centralized fruiting population structure through comprehensive regulation and control) to save labor by 70%; Using cotton varieties with early maturity or mid-early maturity, reasonably higher plant density, one-off deep-soil application of controlled-release fertilizer and spraying fertilizer by UAV (Unmanned Aerial Vehicle) with water-soluble fertilizer for foliage, which can save fertilizer by 50%; and by making use of the resistance of insect-resistant cotton varieties, sowing late at an appropriate time to shorten cotton growth period, and control pests and diseases by using food or sex induced inducers, biological pesticides, insecticidal lamps, and UAV, which can save pesticide by 40%. Compared with traditional technologies, this technology has greatly reduced the labor inputs in cotton production, the substitution rate of agricultural machinery for labor has reached 60%, the utilization rate of chemical fertilizer has increased by more than 11.2%, and the economic benefit has increased by 30%. It also alleviates the non-point source pollution caused by excessive use of chemical fertilizer and pesticides, and provides technical support for promoting the fundamental reform of cotton production mode.

    Table and Figures | Reference | Related Articles | Metrics
    Research progress on traits and assessment methods of stalk lodging resistance in maize
    ZHAO Xue, ZHOU Shun-Li
    Acta Agronomica Sinica    2022, 48 (1): 15-26.   DOI: 10.3724/SP.J.1006.2022.03055
    Abstract272)   HTML41)    PDF(pc) (959KB)(399)       Save

    Maize stalk lodging causes yield loss, decreases grain quality, increases harvest costs, and makes it impossible for grain dehydration after physiological maturity which limits mechanical grain harvest. Previous researches have been conducted to study the traits related to stalk lodging, including morphological and anatomical traits, chemical constituents of the plant and internode. However, there exist some disagreements, and lack quantitative studies on stalk lodging resistance. In this study, we review the evaluation methods and indicators of stalk lodging resistance, the determination methods of mechanical properties as well as analysis methods of stalk lodging related traits and some factors that may have effects on the results. Furthermore, we put forward the existing problems in previous researches on traits and evaluation indicators related to stalk lodging resistance and the contents need to be given further attention. These results provide a reference for further study of maize stalk lodging resistance traits and evaluation methods, lodging resistance breeding and optimization of cultivation measures.

    Table and Figures | Reference | Related Articles | Metrics
    Xian- geng identification by SNP markers in Oryza sativa L.
    ZHENG Xiang-Hua, YE Jun-Hua, CHENG Chao-Ping, WEI Xing-Hua, YE Xin-Fu, YANG Yao-Long
    Acta Agronomica Sinica    2022, 48 (2): 342-352.   DOI: 10.3724/SP.J.1006.2022.02085
    Abstract107)   HTML3)    PDF(pc) (1614KB)(101)       Save

    Asian cultivated rice (Oryza sativa L.) is divided into two subspecies of xian and geng. With the development of hybrid rice and utilization of interspecific heterosis, the boundaries between xian and geng are becoming more and more vague. In this study, based on the SNP-index value of 20 million single nucleotide polymorphism (SNP) loci from 3000 rice germplasm resources, we captured 4084 xian-geng specific SNP loci named as 4k-SNP and used the xian-geng index as an indicator for xian-geng identification. Furthermore, the 4k-SNP was reduced to 40-SNP (40 SNP loci) for indica/japonica identification by using the statistical analysis methods such as large-scale simple random sampling based on the dimensionality reduction algorithms. To verify the effectiveness of 40-SNP on xian-geng identification, 82 bred varieties were used in this study to compare the results of 40-SNP xian-geng identification and 4k-SNP identification. The result showed that the geng index obtained from 40-SNP and 4k-SNP were very close, and the correlation coefficient was 0.99. Moreover, a total of 49 varieties, belonging to six subgroups (indica, aus, rayada, aromatic, tropical japonica, and temperate japonica), were used to compare the xian-geng identification results of 40-SNP with those of 4k-SNP and Cheng’s index. And the correlation coefficients of xian-geng identifications between 40-SNP and 4k-SNP as well as between 40-SNP and Cheng’s index were above 0.98 and 0.86, respectively. These results verified the validity and accuracy of 40-SNP on xian-geng identification in Oryza sativa L. In addition, 40-SNP also had a good distinguishability for the six subgroups in rice, and the xian-geng index of indica, aus, rayada, aromatic, tropical japonica, and, temperate japonica was less than 0.20, 0.20-0.40, 0.60-0.85, more than 0.90, and 1.00, respectively. This study provides the data and theoretical basis for the differentiation of xian-geng and the utilization of heterosis and, formulation of seed management regulations.

    Table and Figures | Reference | Related Articles | Metrics
    Effects of DPC and nitrogen fertilizer through drip irrigation on growth and yield in cotton
    ZHANG Te, WANG Mi-Feng, ZHAO Qiang
    Acta Agronomica Sinica    2022, 48 (2): 396-409.   DOI: 10.3724/SP.J.1006.2022.14026
    Abstract95)   HTML12)    PDF(pc) (578KB)(104)       Save

    In order to explore the effects of DPC (1,1-dimethyl-piperidinium chloride) and nitrogen fertilizer on agronomic traits and clarify the interaction effect of DPC and nitrogen fertilizer through drip irrigation in cotton, we performed a two-factor randomized block design with three nitrogen levels (pure N, N1: 150 kg hm -2, N2: 300 kg hm -2, and N3: 450 kg hm -2) and three DPC levels (D1: 525 g hm -2, D2: 1050 g hm -2, and D3: 2100 g hm -2). These groups interacted with each other and formed nine treatments. The effects of different groups on agronomic traits, the spatial and temporal distribution of boll, the accumulation and distribution of dry matter, yield, and fiber quality were investigated in cotton. The results showed that the interaction between DPC and nitrogen fertilizer had a significant impact on the agronomic traits of cotton; The retarding effect of DPC on cotton growth was weakened or even disappeared under the low nitrogen condition. Under N1 treatment, compared to D1 treatment, plant height, initial node height of fruit branch, length of fourth, and seventh fruit branch of D3 treatment increased by 12.07, 1.54, 1.28, and 1.20 cm, respectively. Under normal or high nitrogen conditions, DPC had a certain retarded effect on cotton growth, but the control effect did not increase with the increasing DPC doses. Under N3 treatment, compared with D1 treatment, the plant height, first fruit branch length, and the average internode length of the second fruit of D3 treatment decreased by 1.05, 1.68, and 1.52 cm, respectively. Plant height, stem diameter, and fruit branch number of cottons increased with the increase of nitrogen application rate. Compared with N1 treatment, N3 treatment increased 3.30 cm, 0.75 mm and 0.29 sets, respectively. There were no significant differences in the length of fruit branch and internode among the different nitrogen application rates. The drip application of D2 treatment was beneficial for dry matter accumulation and translocation to reproductive organs. It promoted pre-ambient and ambient peaches growth, but there was not significant effect on cotton yield and fiber quality. The total dry matter accumulation was 13.14%-44.50% higher in N1 than that in other treatments. The percentage of reproductive organs increased by 2.05%-6.30% compared with N3 treatment. When applying 2100 g hm -2 DPC and 150 kg hm -2 nitrogen fertilizer with water drop, the cotton fiber quality, seed cotton yield, boll number per plant, and boll weight per plant were the highest; and the effect of yield increase was better. In conclusion, we recommended to apply 1050-2100 g hm -2DPC and 150 kg hm -2 nitrogen fertilizer with drip irrigation in the cotton area of northern Xinjiang.

    Table and Figures | Reference | Related Articles | Metrics
    Nitrogen fertilizer reduction and precise application model on mechanical transplanting japonica rice with good taste quality under straw returning in Huaibei Area
    ZHANG Jun, ZHOU Dong-Dong, XU Ke, LI Bi-Zhong, LIU Zhong-Hong, ZHOU Nian-Bing, FANG Shu-Liang, ZHANG Yong-Jin, TANG Jie, AN Li-Zheng
    Acta Agronomica Sinica    2022, 48 (2): 410-422.   DOI: 10.3724/SP.J.1006.2022.02093
    Abstract76)   HTML4)    PDF(pc) (723KB)(103)       Save

    At present, “nitrogen reduction” has become one of the planting measures for good eating quality japonica rice, but the scientific management plan of nitrogen fertilizer after nitrogen reduction is unclear and further studies are needed. From 2018 to 2019, good eating quality japonica rice varieties including Nanjing 505 and Nanjing 2728 were planted as materials, and four ratios of basic and tillering to panicle fertilizer including 5:5, 6:4, 7:3, and 8:2 were arranged with nitrogen application 20% less than conventional nitrogen application (CK) for mechanical transplanting rice under wheat straw returning. Yield, rice quality, and nitrogen utilization were investigated to determine the effects under nitrogen reduction for good eating quality japonica rice. The results were as follows: With the increase of the proportion of the basic and tillering fertilizer in the total nitrogen application, the yield increased first and then decreased. The 7:3 treatment had the highest yield, reaching 11,134.80-11,280.19 kg hm -2 for two years. Compared with CK, the yield increased by 1.23%-2.54% and there was no significant difference. The 7:3 treatment group could obtain sufficient population spikelet, higher seed-setting rate, and 1000-grain weight. With the increase of the proportion of nitrogen application in the previous period, the dry matter weight of the population at (N-n) stage and jointing stage displayed an increasing trend, while the dry matter weight at heading stage and maturity stage, the dry matter accumulation from heading to maturity, the final nitrogen accumulation and the nitrogen efficiency increased first and then decreased, and reached a peak in the 7:3 treatment. Compared with CK, nitrogen reduction treatment could ensure higher dry matter accumulation of the population at the later stage by increasing the proportion of nitrogen fertilizer application (7:3) at the early stage, which significantly improved nitrogen absorption and nitrogen use efficiency of the population by 14.10%-15.48%, and significantly higher than CK. For eating quality of japonica rice under nitrogen reduction, the processing quality deteriorated with the increase proportion of basic and tillering nitrogen, the appearance quality became better, the cooking and eating quality improved, and rice RVA profile was optimized. Under the condition of the whole wheat straw to the field, nitrogen was reduced by 20% compared with conventional fertilization. To achieve the comprehensive planting goal of high-yield, high-quality, and high-efficiency for good eating quality rice to a certain extent, nitrogen application with the ratio of basic and tillering fertilizer to panicle fertilizer 7:3 could stabilize or slightly increase the yield of good eating quality japonica rice, greatly increase nitrogen use efficiency, and improve the appearance and taste quality in rice.

    Table and Figures | Reference | Related Articles | Metrics
    Effects of drought at different growth stages and nitrogen application on nitrogen absorption and utilization in peanut
    DING Hong, XU Yang, ZHANG Guan-Chu, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng
    Acta Agronomica Sinica    2022, 48 (3): 695-703.   DOI: 10.3724/SP.J.1006.2022.14038
    Abstract30)   HTML0)    PDF(pc) (808KB)(46)       Save

    The aim of this study was to clarify the effects of drought at different growth stages and nitrogen application on nitrogen absorption and utilization of peanut. We investigated the effects of nitrogen application on nitrogen absorption and utilization efficiency under different water conditions in peanut by the 15N-label technique. The residue and loss rate of nitrogen in soil after peanut harvest were also studied. The soil water treatments were three levels of well-watered conditions (WW, 75%-80% of field capacity), slight water stress at flowering-pegging stage (FD, 55%-60% of field capacity), and slight water stress at pod-setting stage (PD, 55%-60% of field capacity). Nitrogen treatments were three levels of no nitrogen application (LN), moderate nitrogen (MN, 90 kg hm-2), and high nitrogen (HN, 180 kg hm-2). The results showed that peanut yield was decreased under drought stress at different growth stages and the reduction of drought stress at flowering-pegging stage was greater than that at pod-setting stage. Nitrogen accumulation of peanut kernel accounted for 68.42%-77.67% of the total nitrogen accumulation of the whole plant. Compared with the well-watered condition, nitrogen accumulation of peanut plants was decreased under drought stress at both flowering-pegging and pod-setting stages. Compared with WWMN treatment, FDMN treatment significantly increased the accumulation of Ndff and 15N in different organs and promoted the transport of nitrogen to seed kernel in peanut. However, 15N accumulation in kernel was significantly decreased under PDMN treatment. The recovery rate of 15N labeled nitrogen fertilizer was 30.20%-38.42%, the residue rate was 37.12%-48.83%, and the loss rate was 12.75%-32.68%. The recovery rate of nitrogen fertilizer was the highest and the loss rate was the lowest under FDMN treatment. In summary, nitrogen application level of 90 kg hm-2could promote the yield and nitrogen absorption and utilization under drought stress, and reduce the loss of fertilizer nitrogen in peanut.

    Table and Figures | Reference | Related Articles | Metrics
    Genome wide analysis of BnAPs gene family in Brassica napus
    HUANG Cheng, LIANG Xiao-Mei, DAI Cheng, WEN Jing, YI Bin, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, MA Chao-Zhi
    Acta Agronomica Sinica    2022, 48 (3): 597-607.   DOI: 10.3724/SP.J.1006.2022.14023
    Abstract46)   HTML1)    PDF(pc) (1931KB)(61)       Save

    Aspartate protease (AP) is one of the four major proteolytic enzymes and plays an important role in protein processing, signal transduction, and stress response. Brassica napus is an important oil crop in China. We identified 154 APs coding genes in Brassica napu by protein homology analysis, which encoded typical, atypical, and nucellar aspartate proteases, respectively. Gene structure analysis showed that most BnAPs genes contained 1-4 exons and the motif distribution of the same type of aspartic protease was similar. Collinearity analysis revealed that there was a large number of homologous genes between Brassica napus and Brassica rape, Brassica oleracea and Arabidopsis thaliana, and about 89% of BnAPs genes came from genome-wide replication events. Transcriptional analysis demonstrated that BnAPs gene family was expressed in all tissues. The stigma of BnAP30.A05.1/ A05.2/C05.1/C05.2, BnAP36.A04/C08, and BnAP39.A06/C03 increased significantly after pollination. Cis-element analysis in the promoter region of BnAPs gene presented that stress-related cis regulatory elements were significantly enriched. We further verify that the relative expression levels of these genes rich in stress-related cis regulatory elements changed significantly after stress (ABA, NaCl, or 4℃), suggesting that these BnAPs genes may be involved in response to stress in Brassica napus. Compared with Arabidopsis homologous genes, about 24% of BnAPs had the same expression pattern as their homologous AtAPs. This study laid a foundation for further understanding the biological function of aspartic protease family in Brassica napus.

    Table and Figures | Reference | Related Articles | Metrics
    Sugarcane ubiquitin-like protein UBL5 responses to SCMV infection and interacts with SCMV-6K2
    YANG Zong-Tao, LIU Shu-Xian, CHENG Guang-Yuan, ZHANG Hai, ZHOU Ying-Shuan, SHANG He-Yang, HUANG Guo-Qiang, XU Jing-Sheng
    Acta Agronomica Sinica    2022, 48 (2): 332-341.   DOI: 10.3724/SP.J.1006.2022.14001
    Abstract62)   HTML5)    PDF(pc) (6587KB)(59)       Save

    Ubiquitylation plays key roles in the regulation of protein function, growth and development, and response to stress. Ubiquitin-like proteins (UBLs) are the main components of the ubiquitin-proteasome system (UPS). In our previous study, the UBL5 homologue was isolated from sugarcane (Saccharum spp. hybrid) by yeast two-hybrid (Y2H) with the 6K2 of Sugarcane mosaic virus (SCMV) as bait, and then designated as ScUBL5 with 73 aa in length. In the present study, the interaction of ScUBL5 with the SCMV-6K2 was further confirmed by bimolecular fluorescence complementation assays (BiFC). Bioinformatics analysis showed that ScUBL5 is a stable hydrophilic non-secretory protein without signal peptide or transmembrane domain. Phylogenetic tree analysis showed that ScUBL5 is species specific. Subcellular localization analysis showed that ScUBL5 is localized in cytoplasm and nucleus. ScUBL5 gene shows obvious tissue specificity in sugarcane by real-time quantitative PCR analysis. The expression levels of ScUBL5 gene in the established morphogenesis tissues such as the 1st leaf, the 7th leaf, the 8th internode and the root were significantly higher than those in the immature tissues such as leaf roll and the 3rd internode. The expression of ScUBL5 gene is significantly affected by SCMV infection. ScUBL5 was significantly upregulated in the early stage of SCMV infection, then downregulated but significantly higher than the control at the late stage of SCMV infection.

    Table and Figures | Reference | Related Articles | Metrics
    Application of Fhb1 gene in wheat breeding programs for the Yellow-Huai Rivers valley winter wheat zone of China
    MA Hong-Bo, LIU Dong-Tao, FENG Guo-Hua, WANG Jing, ZHU Xue-Cheng, ZHANG Hui-Yun, LIU Jing, LIU Li-Wei, YI Yuan
    Acta Agronomica Sinica    2022, 48 (3): 747-758.   DOI: 10.3724/SP.J.1006.2022.11019
    Abstract55)   HTML1)    PDF(pc) (1279KB)(54)       Save

    Fusarium head blight (FHB), caused by Fusarium graminearum, is an important disease that seriously threatens the safety of wheat production. Breeding progress of resistant cultivars has been limited due to absence of the resistant sources with facultative growth habit and poor screening environment in the Huang-Huai region, the main wheat producing area of China. Fhb1, as the most effective and stable gene, is the only gene widely used in the global breeding programs for improving FHB resistance of wheat. However, utilization of Fhb1 in the Yellow-Huai River Valleys Winter Wheat Zone is limited so far. In this study, several excellent advanced lines with Fhb1 were developed by limited backcrossing and molecular marker-assisted selection in the BC2F1 progenies of the susceptible variety Aikang 58 (the recurrent parent) and H35 (the donor parent of Fhb1 gene). Then, the individuals were used to cross with Xumai 36 and Xumai 2023 (with high yield but susceptible to FHB), and a series of elite lines with Fhb1 were developed using the doubled haploid and the traditional pedigree selection methods. Xumai DH9 and Xumai 17252 were moderate resistance to FHB in different screening environments for several years. The average resistance level of the lines with Fhb1 gene was significantly higher than that of the susceptible control. The introduction of Fhb1 significantly improved the resistance to FHB, but some lines were still highly susceptible, indicating that the resistance to FHB was affected by other genetic factors. This study provides an example for the use of Fhb1 gene in improving FHB resistance in the Yellow-Huai River Valleys Winter Wheat Zone of China.

    Table and Figures | Reference | Related Articles | Metrics
    Linkage Analysis and Genome-Wide Association Study of QTLs Controlling Stem-Breaking-Strength-Related Traits in Wheat
    LIU Kai,DENG Zhi-Ying,ZHANG Ying,WANG Fang-Fang,LIU Tong-Tong,LI Qing-Fang,SHAO Wen,ZHAO Bin,TIAN Ji-Chun*,CHEN Jian-Sheng*
    Acta Agron Sin    2017, 43 (04): 483-495.   DOI: 10.3724/SP.J.1006.2017.00483
    Abstract316)   HTML1)    PDF(pc) (2841KB)(743)       Save

    Stem strengthhas close relationship with lodging character, thereby, affects final yield in wheat. The objectives of this study were to unravel the genetic mechanism of stem-breaking-strength-related traits and find molecular markers closely linked or associated with these traits. We tried to map the stem-breaking-strength-related QTLs through linkage analysis using the RIL population consisting of 173 F8:9 lines derived from Shannong 01-35 ´ Gaocheng 9411) and associationanalysis using a nature population consisting of 2015 wheat varieties. Both populations were planted in two environments and genetically screened with the 90 k SNP array, DArT technology, and traditional molecular markers.By means of the existing high-density genetic map, nine additive QTLs were detectedin different regions onchromosome 4B, such asDURUM_CONTIG63670_287–IACX557 and EX_C101685–RAC875_C27536, which controlled stem-breaking strength, plant height, filling degree of the second internode and culm wall thickness of the second internode and explained 9.40–36.30% of the phenotypic variations.By means of a composite map (containing 24,355 SNPs) based on the IlluminaInfinium assay, a total of 37 SNPs were found in the natural population to be associated withstem-breaking-strength-relatedtraits (P<0.0001). These SNPswere distributed on chromosomes1B, 2B, 2D, 3A, 3B, 4B, 5A, 5D, 6B, 7A, 7B, and 7D and explained 10.70%–36.30% of the phenotypic variations.Thegenetic distance between RAC875_C27536 detected throughlinkage analysis and Tdurum_contig4974_355 detected through genome-wide association analysis was 6.7cM in thecomposite map, indicatingthe presence of importantgenes controlling stem strengthin this region.

    Reference | Related Articles | Metrics
    Effects of wide range sowing on grain yield, quality, and nitrogen use of strong gluten wheat
    LIU Yun-Jing, ZHENG Fei-Na, ZHANG Xiu, CHU Jin-Peng, YU Hai-Tao, DAI Xing-Long, HE Ming-Rong
    Acta Agronomica Sinica    2022, 48 (3): 716-725.   DOI: 10.3724/SP.J.1006.2022.11012
    Abstract44)   HTML0)    PDF(pc) (922KB)(56)       Save

    It is well known that wide range sowing can simultaneously improve grain yield (GY) and nitrogen use efficiency (NUE). However, the effects of wide range sowing on grain quality have not been investigated while GY and NUE increased. In the present study, four winter wheat cultivars (Gaoyou 5766, Jimai 44, Taishan 27, and Zhouyuan 9369) were used as experimental materials and two sowing patterns (the wide range sowing and conventional drilling sowing) were designed during 2018-2019 and 2019-2020 growing seasons. Also, we investigated the effects of wide range sowing on GY, NUE, and grain quality. Under wide range sowing, grain number on unit land area were increased by an average of 13.16% across cultivars and growth seasons mainly due to the increase of spike number on unit land area, and in turn GY increased by an average of 13.39%. Meanwhile, nitrogen (N) uptake during whole growth season especially at post-anthesis stage were enhanced. The N accumulation during whole growth season increased by an average of 10.29% while that increased by an average of 36.83% at post-anthesis stage. Consequently, N uptake efficiency and NUE increased by 12.73% and 13.39%, respectively. Enhanced N uptake resulted in a sufficient N supply for grain and a significant increase in grain N accumulation on unit land area. A similar increase magnitude was observed between grain N accumulation (on average 13.38%), grain number (13.16%), and GY (13.39%). As a result, total quantity of N per grain and grain protein concentration remained unchanged, which led to a stable grain protein composition and grain quality. Conclusively, wide range sowing can maintain good grain quality with increased GY and NUE by optimizing coupling of GY formation process with the process of N uptake and translocation.

    Table and Figures | Reference | Related Articles | Metrics
    Effects of nitrogen rate on growth, grain yield, and nitrogen utilization of multiple cropping proso millet after spring-wheat in Irrigation Area of Ningxia
    XIE Cheng-Hui, MA Hai-Zhao, XU Hong-Wei, XU Xi-Yang, RUAN Guo-Bing, GUO Zheng-Yan, NING Yong-Pei, FENG Yong-Zhong, YANG Gai-He, REN Guang-Xin
    Acta Agronomica Sinica    2022, 48 (2): 463-477.   DOI: 10.3724/SP.J.1006.2022.14010
    Abstract71)   HTML11)    PDF(pc) (1376KB)(70)       Save

    The objective of this study is to clarify the growth rule, yield, and nitrogen utilization efficiency of proso millet under different nitrogen rates, the relationship between morphological characteristics and grain yield and nitrogen utilization was explored, and the suitable nitrogen rate for multiple cropping proso millet after spring-wheat in Irrigation Area of Ningxia was determined. The field experiments were conducted by single factor randomized block design, with four nitrogen rates [0 (N0), 90 (N1), 120 (N2), and 150 kg hm -2 (N3)] were set in 2019, and six nitrogen rates [180 (N4) and 210 kg hm -2 (N5) were added] in 2020. The results showed that the plant height, stem diameter, leaf area, root morphology, and dry matter accumulation at the key growth stages of proso millet were significantly promoted by nitrogen application, however, nitrogen application rate exceeded 150 kg hm -2, these indexes declined slightly except for the stem diameter and leaf area. With the increase of nitrogen rate, the root-shoot ratio decreased first and then increased and then decreased slightly, and it reached the minimum under N2 treatment at most growth stages. The root-shoot ratio at jointing, heading, grain-filling and maturity stage under N2 treatment were 0.119, 0.087, 0.054, and 0.052, respectively. The grain yield, 1000-grain weight, and grain number per plant were significantly increased by nitrogen application, and with the increase of nitrogen application rate, the yield increased initially then slightly decreased, and achieved the best effect in N2 and N3 treatments. The grain yields of N2 and N3 treatments were 2979.41 kg hm -2 and 3084.67 kg hm -2, respectively, which were 76.22% and 83.21% higher than those of N0 treatment. Nitrogen harvest index (NHI), nitrogen fertilizer apparent recovery rate (NRE), agronomic efficiency (NAE), and partial productivity (NPFP) under N2 treatment were 60.23%, 61.81%, 10.77 kg kg -1, and 24.83 kg kg -1, respectively. Furthermore, grain yield was significantly positively correlated with each growth index, and there was significant positive correlation between each growth index, and the root morphological characteristics were significantly positively correlated with nitrogen accumulation. These results revealed that nitrogen application could improve the root morphological characteristics of proso millet to promote the absorption of nitrogen, and further promote the growth of canopy, which was conductive to yield formation. In view of the growth, grain yield and nitrogen utilization, the reasonable nitrogen rate for multiple cropping proso millet in Irrigation Area of Ningxia was 120-150 kg hm -2.

    Table and Figures | Reference | Related Articles | Metrics
    Rapid identification of adult plant wheat stripe rust resistance gene YrC271 using high-throughput SNP array-based bulked segregant analysis
    LIU Dan, ZHOU Cai-E, WANG Xiao-Ting, WU Qi-Meng, ZHANG Xu, WANG Qi-Lin, ZENG Qing-Dong, KANG Zhen-Sheng, HAN De-Jun, WU Jian-Hui
    Acta Agronomica Sinica    2022, 48 (3): 553-564.   DOI: 10.3724/SP.J.1006.2022.11039
    Abstract52)   HTML1)    PDF(pc) (1507KB)(42)       Save

    Wheat cultivar C271 registered as PI 210904 in the USDA National Small Grains Collection was developed from Punjab Pakistan in 1953 and it confers adult plant resistance (APR) to stripe rust both in the United States and China for many years. In the present study, we dissected the genetic basis of stripe rust resistance on 229 F2:3 populations produced by crossing Jinmai 79 and C271 in the fields of Yangling and Jiangyou. Bulked segregant analysis coupled with wheat 660K SNP array placed the majority of SNPs differences on chromosome arm 3BS. After using allele-specific quantitative PCR based genotyping assay (AQP) to confirm the SNPs, a linkage map was constructed and a major locus was detected across all environments based on IciMapping v4.1 software. The QTL, designated as YrC271, was flanked by SNP markers AX-109001377 and AX-111087256 with a genetic interval of 1.9 cM corresponding to a physical distance of 1.9 Mb in RefSeq v.1.0 (positions 6.1-8.0 Mb). Comparative genomics analysis was performed to detect the collinear genomic regions of different hexaploid wheat accessions (Triticum aestivum), T. dicoccoides, and T. turgidum. More than 340 SNPs in the physical region were extracted for haplotype analysis in a panel of over 1484 worldwide common wheat accessions, and five major haplotypes (Hap1, Hap2, Hap3, Hap4, and Hap5) were identified. And the favorable haplotype Hap1 was highly associated with stripe rust resistance. YrC271 appeared to be similar to YrC271 based on comparison of relative distance, stripe rust responses, and pedigree analyses, but allelism tests, cloning or precise phenotypic comparisons would be needed for confirmation. The YrC271 region provided the opportunity for further map-based cloning and haplotypes analysis enabled pyramiding favorable alleles into commercial cultivars by marker-assisted selection.

    Table and Figures | Reference | Related Articles | Metrics
    Effects of sink-limiting treatments on leaf carbon metabolism in soybean
    ZHANG Guo-Wei, LI Kai, LI Si-Jia, WANG Xiao-Jing, YANG Chang-Qin, LIU Rui-Xian
    Acta Agronomica Sinica    2022, 48 (2): 529-537.   DOI: 10.3724/SP.J.1006.2022.14024
    Abstract97)   HTML10)    PDF(pc) (833KB)(66)       Save

    Carbon metabolism is one of the most obvious physiological processes affected by source-sink relationship, which is closely related to plant growth and yield formation. The study of the effect of sink-limiting treatment on carbon metabolism of soybean leaf can provide a theoretical basis for understanding yield reduction mechanism caused by the imbalance of source-sink relationship. Taking early maturing soybean Sudou 13 as materials, pool experiments were carried out at the soybean experimental station of Jiangsu Academy of Agricultural Sciences in 2019 and 2020. The sink-limiting treatments (all pods removal, 1/2 pods removal, and all seed injury) were conducted at R4 stage, and intact (fully podded) plants were used as control. The results showed that sink-limiting treatments delayed leaf senescence and abscission and caused stay-green. Sink-limiting treatments inhibited the net photosynthetic rate (Pn) in a short time after treatment, but did not affect the initial carboxylation rate (ɑ), and the decrease of Pn was mainly restricted by stomata limitation. With the prolongation of the time after treatment, the inhibition effect on photosynthesis gradually weakened and turned into a promoting effect. At late growth stages, the stay-green syndrome leaves still maintain relatively higher initial carboxylation rate (a), sugar phosphate synthase (SPS), sucrose synthase (SuSy), acid invertase (SAI) activity, photosynthetic pigment, soluble sugar, starch, sucrose, and fructose content, which was beneficial to maintaining a relatively high photosynthetic performance. Sink-limiting treatments induced more photosynthetic products to be distributed to vegetative organs, and stimulated stems and leaves to be new sink organs in certain extent, which was beneficial to the output of photosynthetic products and maintained relatively high levels of carbon metabolism of leaves at late growth stages. The effects of removing all pods and seed injury treatments on delaying leaf senescence and abscission, reducing photosynthetic performance and carbon metabolism was significantly higher than those of removing 1/2 pod. In conclusion, sink-limiting under the same source condition could induce stay-green syndrome. The greater the degree of sink-limiting, the more severe the green retention. Sink-limiting treatment significantly affected the carbon metabolism of soybean plant, although it inhibited photosynthetic performance in a short period after treatment. It maintained higher photosynthetic and key enzyme activities of carbon metabolism at late growth stages, which was conducive to the synthesis of more carbohydrates and stimulated the stems, leaves, and petioles to transform into new sink organs to a certain extent.

    Table and Figures | Reference | Related Articles | Metrics
    Effects of enhancing leaf nitrogen output on tiller growth and carbon metabolism in rice
    WANG Yan, CHEN Zhi-Xiong, JIANG Da-Gang, ZHANG Can-Kui, ZHA Man-Rong
    Acta Agronomica Sinica    2022, 48 (3): 739-746.   DOI: 10.3724/SP.J.1006.2022.12011
    Abstract42)   HTML0)    PDF(pc) (921KB)(37)       Save

    Nitrogen fertilizer application is one of the main cultivation measures to raise the yield, and high nitrogen level has limited contribution to grain yield due to limited nitrogen translocation in rice. To clarify the effects of nitrogen allocation on rice growth, we constructed pOsSUT1::AtAMT1.2 transgenic rice, the ammonium transporter gene AtAMT1.2 specific expression in phloem to promote leaf nitrogen output. The growth and yield of transgenic plants were measured under HN (high nitrogen) and LN (low nitrogen) conditions. Compared to WT plants, more tillers and higher grain yield were detected in transgenic plants in response to HN condition. The sugar output in leaves was increased, and the relative expression levels of the strigolactone pathway related genes OsTB1 and OsD14 in tiller buds were down-regulated. Our results indicated that the increase of leaf nitrogen export by overexpressing AtAMT1.2 gene could promote sugar translocation from leaves to tillering buds, which improved the growth of tiller, increased the effective tiller number and nitrogen use efficiency.

    Table and Figures | Reference | Related Articles | Metrics
    QTLs analysis of oil and three main fatty acid contents in cottonseeds
    ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying
    Acta Agronomica Sinica    2022, 48 (2): 380-395.   DOI: 10.3724/SP.J.1006.2022.04273
    Abstract113)   HTML4)    PDF(pc) (4150KB)(121)       Save

    In this study, in order to uncover more useful gene information for these traits, the analysis of QTLs controlling the contents of oil, palmitic acid, oleic acid, and linoleic acid in cottonseeds was conducted in different genetic systems. Based on a set of 188 recombinant inbred lines (RILs) derived from an intra-specific cross between two upland germplasms HS46 (P1) and MARCABUCAG8US-1-88 (P2), double backcross populations BC (P1) and BC (P2) were constructed in 2017 and 2018, respectively. BC (P1) and BC (P2) populations were obtained through backcrossing each of the two parents (HS46 and MARCABUCAG8US-1-88) with the 188 RILs, respectively. The cottonseeds from these backcross populations were used for QTLs analysis of oil, palmitic acid, oleic acid, and linoleic acid contents. To map QTLs for these traits, the mixed linear genetic model and the QTL Network-CL-2.0-Seed software, which were developed especially for seed traits, were applied. In total, seven QTLs for the oil content, three for the palmitic acid content, two for the oleic acid content, and three for the linoleic acid content were detected. Significant additive effects of QTLs from maternal plants and embryos were detected for all the QTLs. Seven QTLs, each of which explained more than 10% of total phenotypic variation, were found. The detected QTLs in the present study may give us better understanding of the molecular inheritance for these four traits, and provide more reliable information for molecular marker assisted breeding.

    Table and Figures | Reference | Related Articles | Metrics
    Effects of water deficit on physiology and biochemistry of seedlings of different wheat varieties and the alleviation effect of exogenous application of 5-aminolevulinic acid
    CHEN Xin-Yi, SONG Yu-Hang, ZHANG Meng-Han, LI Xiao-Yan, LI Hua, WANG Yue-Xia, QI Xue-Li
    Acta Agronomica Sinica    2022, 48 (2): 478-487.   DOI: 10.3724/SP.J.1006.2022.11026
    Abstract88)   HTML10)    PDF(pc) (4458KB)(116)       Save

    Drought stress happens frequently in Huang-Huai winter wheat planted area, causing severe injury on photosynthetic apparatus of wheat seedlings. To characterize the traits of photosynthetic physiology in different wheat cultivars in response to water deficit, the newly in-lab cultivated Zhengmai 1860, as well as Bainong 207 and Zhoumai 18 were used as materials in this study. We explored the effects of water deficit on photosynthetic traits, antioxidant enzyme activities, and related gene transcription of seedlings in different cultivars, as well as the drought alleviation effect of exogenous application of 5-aminolevulinic acid (ALA). The results were as follows: Zhengmai 1860 had comparatively higher root dry weight and root shoot ratio than the other two cultivars under drought stress. Compared to Zhoumai 18, the drought resistant cultivars (Zhengmai 1860 and Bainong 207) had lower reduction in chlorophyll content and increased MDA content, enhanced the activities of SOD and CAT, and lowered reductions in chlorophyll fluorescence parameters and the photosynthetic parameters. Meanwhile, water deficit obviously improved the transcriptions of antioxidant enzyme-encoded genes CAT, SOD-Cu/Zn, MnSO, and FeSOD, which showed a correlation between the increasing level with the drought resistant ability. The exogenous pretreatment of ALA further enhanced the activities of SOD and CAT to lower the damage to membrane lipid peroxidation by inducing the transcriptions of CAT, SOD-Cu/Zn, and MnSOD. ATPase activity was also increased to alleviate water deficit on the damage to photosynthetic physiology. Moreover, we found for the first time that the transcriptional maintenance of chloroplast photosynthetic apparatus related psb28 gene had a correlation with the drought resistance between different wheat cultivars, which was also significantly induced by the exogenously pretreated ALA. These results in this study proposed that the transcriptions of antioxidant enzymes and chloroplast photosynthesis related genes had a close relationship with the drought resistant ability of wheat and the alleviation effect of exogenous ALA in wheat.

    Table and Figures | Reference | Related Articles | Metrics
    Mapping of QTLs for resistance to rice black-streaked dwarf disease
    LIU Jiang-Ning,WANG Chu-Xin,ZHANG Hong-GEN,MIAO Yi-Xu,GAO Hai-Lin,XU Zuo-Peng,LIU Qiao-Quan,TANG Shu-Zhu
    Acta Agronomica Sinica    2019, 45 (11): 1664-1671.   DOI: 10.3724/SP.J.1006.2019.92003
    Abstract322)   HTML7)    PDF(pc) (3509KB)(182)       Save

    Rice black-streaked dwarf virus disease (RBSDV) may cause great loss of rice production, and breeding resistant varieties is an effective method to control RBSDV. To develop resistant varieties, it is important to screen germplasm that shows RBSDV resistance and to identify the genes/quantitative trait loci (QTLs) contained. In the present study, a set of 222 recombinant inbred lines (RILs) derived from the cross between L5494 (a susceptible japonica variety) and IR36 (a resistant indica variety) were constructed for RBSDV-resistant QTL mapping. With natural infection test, the RBSDV incidences of L5494 and IR36 were 84.26% and 28.70%, respectively, and the disease incidence of RILs was ranged from 11.21% to 89.81%. Using 134 polymorphic molecular markers, a linkage genetic map was constructed. The map covered a total length of 1475.97 cM with an average interval of 11. 1 cM between adjacent markers. Four RBSDV-resistant QTLs were discovered using QTL IciMapping 4.0 Software, of which, qRBSDV-1, qRBSDV-2, and qRBSDV-9 were from the resistant parent IR36, and qRBSDV-6 from the susceptible parent L5494. QTLs qRBSDV-1, qRBSDV-2, qRBSDV-6, and qRBSDV-9 were located on chromosomes 1, 2, 6, and 9, respectively, which explained 12.64%, 16.00%, 10.82%, and 8.43% of the phenotypic variations. Moreover, a RBSDV-resistant QTL from 93-11 (O. sativa spp. indica) at the qRBSDV-1 locus was confirmed by a near isogenic line that harbors qRBSDV-1 derived from 93-11 with the Nipponbare (O. sativa spp. japonica) genetic background. Our findings will be benefit for the marker assisted breeding of RBSDV-resistant varieties.

    Table and Figures | Reference | Related Articles | Metrics
    Effects of low temperature in spring on fertility of pollen and formation of grain number in wheat
    GAO Yun, ZHANG Yu-Xue, MA Quan, SU Sheng-Nan, LI Chun-Yan, DING Jin-Feng, ZHU Min, ZHU Xin-Kai, GUO Wen-Shan
    Acta Agronomica Sinica    2021, 47 (1): 104-115.   DOI: 10.3724/SP.J.1006.2021.01031
    Abstract278)   HTML6)    PDF(pc) (7315KB)(306)       Save

    Grain yield and the number of grains per ear of wheat decreased under the low temperature after jointing stage. In order to explore the physiological reasons of the decrease of grains number per ear by low temperature in spring, the spring wheat variety Yangmai 16 and the semi-winter wheat variety Xumai 30 were used as tested varieties to analyze the effects of low temperature in spring on the fertility of pollen and the formation of grain numbers at the appearance of the penultimate leaf stage (5℃/-3℃, day/night), booting stage (8℃/-1℃, day/night), and anthesis stage (12℃/4℃, day/night). The results showed that low temperature at the appearance of the penultimate leaf stage and booting stage resulted in abnormal metabolism of starch and protein in the anther both at the binuclear and tri-nuclear pollen stages and delayed degradation of the tapetum. The low temperature at the booting stage caused abnormal meiosis of pollen mother cells, abnormalities in chromosome pairing, which affected the formation of male gametophyte. The abortion rate of pollen was more significantly increased under low temperature at the appearance of the penultimate leaf stage than that at the booting stage, and it was the minimum at anthesis stage. The abortion rate of pollen in Xumai 30 was higher than that in Yangmai 16. The low temperature at three stages had significant effects on the number of spikelets, the number of fertile spikelets and the number of grains per spikelet. The effect of low temperature at the appearance of the penultimate leaf stage on grains number per spikelet was the most significant. There was a significant positive correlation between the number of grains per spike and pollen fertility, which was affected by abnormal meiosis, delayed degradation of the tapetum, and undersupply of nutriment for anther development. Therefore, the decline of pollen fertility caused by low temperature in spring is the main reason for the decrease of grains number per spike.

    Table and Figures | Reference | Related Articles | Metrics
    Genome-wide association study of ear cob diameter in maize
    MA Juan, CAO Yan-Yong, LI Hui-Yong
    Acta Agronomica Sinica    2021, 47 (7): 1228-1238.   DOI: 10.3724/SP.J.1006.2021.03048
    Abstract288)   HTML20)    PDF(pc) (8297KB)(250)       Save

    Maize ear cob diameter is an important trait impacting the yield of grain and cob, and the analysis of its genetic mechanism will provide a guidance for high-yield breeding. In this study, the genotypes of 309 inbred lines were identified by genotyping-by-sequencing technology. FarmCPU (fixed and random model circulating probability unification), MLMM (multiple loci mixed linear model), and CMLM (compressed mixed linear model) were used to identify significant single nucleotide polymorphisms (SNP) for ear cob diameter of Yuanyang of Henan province, Dancheng of Henan province, Yucheng of Henan province, Sanya of Hainan province in 2017 and 2019, and best linear unbiased estimate environment. A total of 12 significant SNP for ear cob diameter were detected at P < 8.60E-07. S4_29277313 was detected from Yuanyang in 2017 using FarmCPU and MLMM. The phenotypic variance explained of S1_29006330, S2_170889116, S2_2046026464, and S4_83821463 ranged from 10.23% to 14.17%, and were considered major-effect SNP. In addition, S1_29006330 was mapped in the interval of known QTL for ear cob diameter. A total of 17 candidate genes were identified. Among them, WAKL14 (wall-associated receptor kinase-like 14), transcription factor ZIM35 (zinc-finger protein expressed in inflorescence meristem 35), HMGA (HMG-Y-related protein A), histone-lysine N-methyltransferase ATX4 (Arabidopsis trithorax 4), and XTH32 (xyloglucan endotransglucosylase/hydrolase protein 32) might be important genes for ear cob diameter. The identification of four major-effect SNP and five candidate genes can provide an information for molecular marker-assisted breeding, fine mapping, and gene cloning.

    Table and Figures | Reference | Related Articles | Metrics
    Reduced application and different combined applications of loss-control urea on summer maize yield and fertilizer efficiency improvement
    ZHANG Qian, HAN Ben-Gao, ZHANG Bo, SHENG Kai, LI Lan-Tao, WANG Yi-Lun
    Acta Agronomica Sinica    2022, 48 (1): 180-192.   DOI: 10.3724/SP.J.1006.2022.03071
    Abstract127)   HTML8)    PDF(pc) (725KB)(130)       Save

    Loss-control urea with nanometer mineral loss control agent added during production period could reduce the loss of nitrogen (N) through adsorption. Figuring out the application rate of loss-control urea and the appropriate rate with conventional urea could provide evidences for summer maize one-time fertilization, N fertilizer reduction, and use efficiency improvement. Under different yield level soil conditions, field experiment was arranged to investigate the effects of different N fertilizer managements on summer maize yield, aboveground biomass, nutrient accumulation, photosynthetic characteristic, and N utilization efficiency. Treatments of conventional urea (N at 210 kg hm-2), loss-control urea (full dose with N at 210 kg hm-2, 10% reduction with N at 189 kg hm-2, and 20% reduction with N at 168 kg hm-2), and different combined proportions of loss-control urea and conventional urea (at 7:3, 5:5, and 3:7) were carried out. The results revealed that N fertilizer application could significantly increase the yield of summer maize and the full-dose loss-control urea treatments increased the yield by 22.96%-27.55%, compared with that under conventional urea application at high- and middle-yield soil conditions. The application of loss-control urea at 10% and 20% reduction sustained the summer maize yield at high- and middle-yield soil condition with improved grains per ear, compared with full-dose loss-control urea application. The N fertilizer utilization efficiency under loss-control urea at 20% reduction treatment at high-yield soil condition reached 41.60%. N accumulation was comparable with full-dose loss-control urea application under proportions of loss-control urea and conventional urea at 7:3 application. Meanwhile, this treatment could sustain the yield and straw biomass at high- and middle-yield level soil and significantly increased the yield and straw biomass at low-yield field. In conclusion, one-time application of loss-control urea with N at 210 kg hm-2 could significantly improve the yield of summer maize and N efficiency of the fertilizer utilization. The application of loss-control urea with 20% reduction could sustain the summer maize yield with significantly improved N utilization efficiency at high- and middle-yield soil conditions, which was the suitable N fertilizer application for high- and middle-yield field. Loss-control urea and conventional urea at 7:3 application was suitable for N fertilizer application for low-yield field.

    Table and Figures | Reference | Related Articles | Metrics
    Research advances of cover crops and their important roles
    JIAN Shu-Lian, LI Shu-Xin, LIU Sheng-Qun, LI Xiang-Nan
    Acta Agronomica Sinica    2022, 48 (1): 1-14.   DOI: 10.3724/SP.J.1006.2022.03058
    Abstract347)   HTML72)    PDF(pc) (1301KB)(430)       Save

    In crop planting system, the influences of field weeds and soil properties on crop growth and development, yield, and quality have always been paid close attention to agriculture field. Overdose applications of chemical fertilizers and herbicides are beneficial for crop yield and well control of weeds, however, their negative impacts on soil and environment seriously restrict the sustainable development of agricultural production. Planting cover crops have been considered as a novel strategy to achieve sustainable agricultural development, which can help to control weeds, reduce nitrogen application, and improve soil quality. We summarize the current research advance progress of cover crops and their application in crop cultivation, including the origin and development process, main types, functions, and cropping systems of cover crops, in order to provide a theoretical basis for the research and application of cover crops in agriculture production in China.

    Table and Figures | Reference | Related Articles | Metrics
    Physiological response of crop to elevated atmospheric carbon dioxide concentration: a review
    Yan-Sheng LI, Jian JIN, Xiao-Bing LIU
    Acta Agronomica Sinica    2020, 46 (12): 1819-1830.   DOI: 10.3724/SP.J.1006.2020.02027
    Abstract475)   HTML52)    PDF(pc) (1292KB)(673)       Save

    The increase of atmospheric concentration of carbon dioxide ([CO2]) has substantially had a huge impact on agricultural production. As the sole substrate for photosynthesis, the increase of atmospheric [CO2] stimulates the net photosynthetic rate, thus promoting the biomass accumulation and yield level in many crops. However, the ‘fertilization’ effect of the elevated atmospheric [CO2] on crop production is less than theoretical expectation, and elevated [CO2] increases the health risk due to the decline in grain quality. The relevant mechanism is still unclear. In this paper, we analyzed the effect of elevated [CO2] on crop photosynthesis system, reviewed various responses of key photosynthesis indicators, such as the leaf net photosynthetic rate, the intercellular [CO2] of leaves, maximum carboxylation rate of Rubisco (Vc, max), and the capacity of Rubp-regeneration (Jmax) in different crops, in response to the elevated atmospheric [CO2]. Based on the C-N metabolism of the whole plant, we summarized two prevailing hypotheses about the acclimation of photosynthetic capacity under elevated atmospheric [CO2], namely the source-sink regulation mechanism and N limitation mechanism, respectively. We summarized the influence of elevated [CO2] on the nutritional quality of the grain, such as the change in the protein, oil, mineral elements, and vitamin concentrations. Furthermore, we also reviewed the potential interactive effect of the elevated atmospheric temperature and [CO2] on crop growth. Finally, the main research directions of this field in the future are proposed. In summary, this review can provide theoretical reference for accurately assessing the changes in crop yield and quality under climate change conditions, maximizing the ‘fertilization’ effect of elevated [CO2], and mitigating the adverse effects of climate change on crop production.

    Table and Figures | Reference | Related Articles | Metrics
    Advantages of small grain male sterile lines in seed production for a new combination Zhuoliangyou 141 through the mixed-sowing manner
    ZHOU Jie-Qiang, ZHANG Gui-Lian, DENG Hua-Bing, MING Xing-Quan, LEI Bin, LI Fan, TANG Wen-Bang
    Acta Agronomica Sinica    2022, 48 (2): 320-331.   DOI: 10.3724/SP.J.1006.2022.02045
    Abstract71)   HTML3)    PDF(pc) (3564KB)(73)       Save

    Traditional hybrid breeding is backward, low benefit, and high cost, which restricts the promotion and application in hybrid rice. However, Small Grain TMS lines are easy to be mechanically separated after mixed-sowing and mixed-harvesting. Their application will promote the realization of complete Mechanization of Hybrid Rice Seed Production, leading to the reduction of cost and the improvement of seed production efficiency. In this study, we investigated the agronomic characteristics and outcrossing rates suitable for Mechanization of Hybrid Rice Seed Production, using the Small Grain male sterile line Zhuo 201S, Large Grain restorer line R141, and their combination Zhuoliangyou 141 as materials for mixed-sowing and large-scale seed production practice. The results demonstrated that compared with the control TMS C815S, Zhuo 201S plants were shorter, exhibiting longer and more erect ear, fewer glume opening, lower percentage of panicle enclosure and germination on ears. Moreover, Zhuo 201S plants were resistant to smut disease but sensitive to “920” treatment and had weak seed-shattering characteristic. However, R141 plants were tall and insensitive to environmental temperature with large amount of pollen and a long florescence. Both Zhuo 201S and R141 had good outcrossing characteristics. The grain thickness of Zhuo 201S and R141 was 1.71 mm and 2.23 mm, respectively. The 1000-grain weight of Zhuo 201S and R141 was 14.00 g and 28.20 g, respectively. Due to the significant difference in grain sizes, the hybrid F1 seeds could be easily separated with the male parent seeds through a special sieve with narrow and long apertures. The percentage of male parent seeds mixed in hybrid seeds was 0 while the hybrid seed loss rate was 2.31%, suggesting that the seed purity met the standards for Mechanization of Hybrid Rice Seed Production. Compared with the traditional seed production mode, the basic seedling of male parent was reduced by 85%, the capacity of female parent was increased by 20%, the seed production yield was increased by 21.37%, and the comprehensive benefit of seed production was increased by 31.4%. Zhuoliangyou 141 was endowed with the advantages suitable for mechanized production by mix-sowing, with excellently agronomic traits and outcrossing properties along with huge difference in grain size from its parents. Therefore, the whole process of Zhuoliangyou 141 mechanized seed production had a broad application prospect.

    Table and Figures | Reference | Related Articles | Metrics
    Genome-wide identification and expression analysis of Elongator complex family genes in response to abiotic stresses in rice
    WU Yan-Fei, HU Qin, ZHOU Qi, DU Xue-Zhu, SHENG Feng
    Acta Agronomica Sinica    2022, 48 (3): 644-655.   DOI: 10.3724/SP.J.1006.2022.02089
    Abstract55)   HTML0)    PDF(pc) (1322KB)(49)       Save

    Elongator complex (ELP) is a class of protein complex that elongates RNA polymerase II in eukaryotic transcription, which plays an important role in plant growth and development, and resistance to biotic and abiotic stresses. In this study, we identified the ELP family genes and explored the physical and chemical properties, subcellular location, chromosome location, promoter cis-acting elements prediction, and expression patterns under abiotic stresses in rice (Oryza sativa) ELP family genes by bioinformatics methods. A total of six OsELPs members were preliminarily identified, which randomly distributed on five chromosomes and encoded protein containing 250 to 1344 amino acid in rice. Their molecular weight and isoelectric point were 27.97-148.99 kD and 5.01-8.63, respectively. Phylogenetic analysis showed that the ELPs proteins from rice (Oryza sativa), Arabidopsis (Arabidopsis thaliana), yeast (Saccharomyces cerevisiae), and human (Homo sapiens) could be divided into four groups (Group I-Group IV). And subgroup I contained OsELP1, subgroup II contained OsELP2 and OsELP5, subgroup III contained OsELP4, subgroup IV contained OsELP3 and OsELP6. There were a variety of cis-acting elements in the promoter regions of OsELPs, which mainly responded to light, phytohormone, drought, low temperature, defense, and stress stimulant signals. The induced expression patterns confirmed that all OsELPs genes were differentially expressed with different degrees under various abiotic stresses including PEG, low temperature, salt, and dehydration. Among them, OsELP6 was significantly up-regulated under the four kinds of abiotic stresses, which may mediate the comprehensive resistance to various abiotic stresses in rice.

    Table and Figures | Reference | Related Articles | Metrics
    Genetic analysis and molecular characterization of a novel maize Bt2 gene mutant
    XU Ning-Kun, LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu, WANG Gui-Feng
    Acta Agronomica Sinica    2022, 48 (3): 572-579.   DOI: 10.3724/SP.J.1006.2022.13005
    Abstract41)   HTML1)    PDF(pc) (1297KB)(36)       Save

    The research of the molecular mechanism underlying maize kernel development is particularly important for the genetic improvement of maize yield and quality traits. In this study, we characterized a new shrunken kernel mutant 5601Q, which was generated by a random transposon insertion. Genetic analysis indicated that the kernel phenotype was stably controlled by a single recessive gene. F2 segregating population was constructed by crossing 5601Q into B73 inbred line, and the mutant gene was located in the genetic interval of 60.19-62.58 Mb on chromosome 4. Sequence annotation showed that the BRITTLE ENDOSPERM2 (Bt2) gene, previously reported to be involved in maize kernel development, was located in this region. Maize Bt2 gene encoded the small subunit of ADP-glucose pyrophosphorylase (AGPase), the first rate-limiting enzyme in the starch biosynthetic pathway of higher plants. Compared with wild type, 100-grain weight and starch content of mutant 5601Q decreased significantly, but the soluble sugar content increased dramatically 4.67 times. We confirmed that 5601Q was a new allele mutant of Bt2 by allelic test of Bt2 mutant 1774 and 5601Q. Sequencing analysis revealed that Mutator 19 transposon was inserted in the 2nd exon of Bt2 gene. In summary, our results indicated that the shrunken kernel in 5601Q was caused by the loss-of-function of Bt2 gene, which provided a new germplasm resource to elucidate the mechanism of maize Bt2 gene in endosperm storage substance accumulation.

    Table and Figures | Reference | Related Articles | Metrics
    Characteristics of microbial community in the rhizosphere soil of continuous potato cropping in arid regions of the Loess Plateau
    TAN Xue-Lian, GUO Tian-Wen, HU Xin-Yuan, ZHANG Ping-Liang, ZENG Jun, LIU Xiao-Wei
    Acta Agronomica Sinica    2022, 48 (3): 682-694.   DOI: 10.3724/SP.J.1006.2022.14015
    Abstract27)   HTML0)    PDF(pc) (1412KB)(31)       Save

    The response of soil microorganisms to continuous cropping of potato was discussed in this study, aiming at revealing the microbial characteristics of continuous cropping soil degradation. Pot experiments and MiSeq high-throughput sequencing technology were used to study the characteristics of microbial communities in the rhizosphere soil of potato continuous cropping for 1 year (1_rh), 3 years (3_rh), and 5 years (5_rh), with fallow (CK) and rotation (R_rh) as controls. The results showed that compared with CK and rotation, Ace index, Chao index, and Shannon index of 3_rh and 5_rh soil samples decreased significantly. Compared with rotation, the relative abundance of Proteobacteria, Actinobacteria, and Acidobacteria in soil bacteria of continuous potato cropping was higher, while the relative abundance of Ascomycota in soil fungi was lower. In the bacterial community, compared with rotation, the number of Aeromicrobium in 1_rh, 3_rh, 5_rh increased by 258.01%, 625.93%, 76.04%, Arthrobacter increased by 245.42%, 1258.12%, 58.89%, Streptomyces increased by 203.83%, 116.74%, and 311.61%, respectively. In the fungal community, compared with rotation, the number of Fusarium in 3_rh increased by 225.00%, the number of Chaetomium in 5_rh decreased by 31.58%, and the number of Guehomyces in 1_rh, 3_rh, and 5_rh decreased by 55.40%, 58.14%, and 78.37%, respectively. Spizellomyces had a large number in fallow and rotation soils, but a small number in continuous cropping soils for three years and five years, which was close to the detection limit. The results indicated that long-term continuous cropping of potato reduced the diversity of soil microorganisms, changed the dominant population of microorganisms, and unbalanced the structure of soil microbial community.

    Table and Figures | Reference | Related Articles | Metrics
    Preliminary study of genome editing of peanut FAD2 genes by CRISPR/Cas9
    ZHANG Wang, XIAN Jun-Lin, SUN Chao, WANG Chun-Ming, SHI Li, YU Wei-Chang
    Acta Agronomica Sinica    2021, 47 (8): 1481-1490.   DOI: 10.3724/SP.J.1006.2021.04214
    Abstract254)   HTML14)    PDF(pc) (3787KB)(228)       Save

    Oleate dehydrogenase (Δ12FAD or FAD2) is the key enzyme catalyzing the dehydrogenation of oleic acid (OA) at the C12 position to produce diunsaturated linoleic acid (LA). It controls the contents and ratios (O/L) of oleic acid and linoleic acid in plants. Increasing evidences in molecular biology research indicate that AhFAD2 is the key gene for the conversion of oleic acid to linoleic acid, and determines the relative content of oleic acid and linoleic acid in peanut seeds. In this study, the corresponding sgRNA sequences were designed based on AhFAD2 gene sequences, and a CRISPR/Cas9 gene editing vector was constructed to mutate the peanut FAD2A and FAD2B genes. After peanut gene transformation, gene mutations were identified by genomic sequence analysis of transgenic peanut flanking the sgRNA target sites. Target gene analysis indicated that 29 mutations of FAD2A gene in 16 transgenic peanut plants were obtained, among which 16 mutations caused protein sequence changes; 30 mutations in 11 transgenic peanut plants contained mutations in FAD2B gene, among which 17 mutations caused changes in protein sequence. Changes in the protein sequences of the FAD2A and FAD2B genes might affect the enzyme activity, change the catalytic dehydrogenation of oleic acid, hinder the synthesis of linoleic acid, and thus increase the content of peanut oleic acid. These FAD2 gene mutants are valuable in the study of fatty acid metabolism and the breeding of high oleic peanuts.

    Table and Figures | Reference | Related Articles | Metrics

the Crop Science Society of China
the Institute of Crop Science, CAAS
China Science Publishing & Media Ltd.
Published: Science Press
Editor-in-chief: Wan Jian-min
Associate Editors-in-Chief:
Chen Xiao-ya Yang Jian-chang Zhang Xian-long Wang Jian-kang Xu Ming-liang Liu Chun-ming Wang Dao-wen Sun Chuan-qing Ding Yan-feng Jin Wei-wei Chu Cheng-cai Cheng Wei-hong
Director of the editorial department:
Cheng Wei-hong
CN 11-1809/S
ISSN 0496-3490
Post subscription code: 82-336

  • Started in 2013
  • Covered by SCIE
  • Open access in ScienceDirect

Editor in chief: Wan Jian-min
CN 10-1112/S
ISSN 2095-5421, 2214-5141(online)
Online published:
Submission: https://www.editorialmanager.com/cj/
E-mail: cropjournal@caas.cn
Tel: 8610-82108548