Welcome to Acta Agronomica Sinica,

Most Down Articles

    Published in last 1 year| In last 2 years| In last 3 years| All| Most Downloaded in Recent Month | Most Downloaded in Recent Year|

    Published in last 1 year
    Please wait a minute...
    For Selected: Toggle Thumbnails
    Breeding of a novel clubroot disease-resistant Brassica napus variety Huayouza 62R
    LI Qian, Nadil Shah, ZHOU Yuan-Wei, HOU Zhao-Ke, GONG Jian-Fang, LIU Jue, SHANG Zheng-Wei, ZHANG Lei, ZHAN Zong-Xiang, CHANG Hai-Bin, FU Ting-Dong, PIAO Zhong-Yun, ZHANG Chun-Yu
    Acta Agronomica Sinica    2021, 47 (2): 210-223.   DOI: 10.3724/SP.J.1006.2021.04086
    Abstract422)   HTML25)    PDF(pc) (6984KB)(750)       Save

    The rapeseed clubroot disease incidence in China is about 0.67 million hectare, accounting for 10% of the canola production area, which become a serious threat for the safety of Brassica napus industry. Based on this, we used CR Shinki, a Chinese cabbage material containing CRb clubroot disease resistance locus, as the donor parent, and Pol.CMS restorer line Bing409, the parent of Brassica napus national approved varieties Huayouza 62, as the recipient parent, and the CRb resistance locus was introduced into Bing409 by breeding programs such as crossing, backcrossing, self-cross with the foreground and genetic background selection. In the BC3F2 generation, a new restorer line Bing409R with a genetic background close to Bing409 containing CRb resistance locus was obtained, and Huayouza 62R, the first rapeseed hybrid resistant to clubroot disease in China was successfully developed. The results were as follows: CRb disease resistance locus appeared as a dominant single-gene inheritance in B. napus background, and the genetic improvement of resistance to clubroot disease did not at the expense of yield and quality losses for new restorer line Bing409R and its hybrid Huayouza 62R. Bing409R and Huayouza 62R were showed immune-resistance to physiological races of Plasmodiophora brassicae in Sichuan, Hubei, and Anhui provinces in China. This study will provide valuable resources for the breeding of rapeseed in China, and supplemented important support to overcome the threat of rapeseed clubroot disease.

    Table and Figures | Reference | Related Articles | Metrics
    Response of rhizosphere bacterial community diversity to salt stress in peanut
    DAI Liang-Xiang, XU Yang, ZHANG Guan-Chu, SHI Xiao-Long, QIN Fei-Fei, DING Hong, ZHANG Zhi-Meng
    Acta Agronomica Sinica    2021, 47 (8): 1581-1592.   DOI: 10.3724/SP.J.1006.2021.04160
    Abstract237)   HTML6)    PDF(pc) (1106KB)(505)       Save

    To characterize the peanut rhizosphere bacteria community in response to salt stress, a pot experiment was performed with different salt concentrations. The peanut rhizosphere soils at flowering and mature stages were sampled to extract DNA for constructing bacterial 16S rRNA gene library, and then high-throughput sequencing was performed for sequencing and bioinformatics analysis. The results showed that Proteobacteria, Actinobacteria, Patescibacteria, Acidobacteria, and Chloroflexi were the dominant phyla, and the orders Saccharimonadales, Betaproteobacteria, Sphingomonadales, Gemmatimonadales, and Rhizobiales were dominated in the peanut rhizosphere soils. Comparisons of the bacterial community structure of peanuts revealed that the relative abundance of Proteobacteria dramatically increased, while that of Actinobacteria decreased in salt-treated soils, and the fluctuation increased with the increase of the salt concentration. Moreover, applying calcium fertilizer under salt stress increased the abundance of Betaproteobacteria, Gemmatimonadales, and Sphingomonadales, which were affected by salt stress, growth stages, and exogenous calcium application. Cluster analysis revealed that the dominant bacteria of soil groups with high salt concentration were similar and clustered together, while the soil samples of the same growth period were similar and clustered together according to the bacterial structure at the genus level under non-salt stress conditions. Bacterial community structure differed in the growth stages and soil salt concentrations, whereas the differences of soil groups with or without calcium application were relatively small. Function prediction analysis indicated that the sequences related to secondary metabolites, glycan biosynthesis and metabolism, and amino acid and lipid metabolism were enriched in high salt-treated soils. The functional groups increased significantly during the fast-growth period, low salt stress, and basal calcium fertilizer treatments, which may play an important role on the growth and stress response in peanut. This study of microbial communities could lay the foundation for future improvement of stress tolerance of peanuts via modification of the soil microbes.

    Table and Figures | Reference | Related Articles | Metrics
    Research advance on calcium content in wheat grains
    LIU Yu-Xiu, HUANG Shu-Hua, WANG Jing-Lin, ZHANG Zheng-Mao
    Acta Agronomica Sinica    2021, 47 (2): 187-196.   DOI: 10.3724/SP.J.1006.2021.01045
    Abstract516)   HTML64)    PDF(pc) (418KB)(441)       Save

    Increasing the mineral content is becoming the important research direction and major target for crops breeding in the world. Calcium is an essential mineral element for human health and plays a pivotal role in skeletogenesis and metabolism. It is estimated that about 3.5 billion people was suffered from calcium deficiencies. Calcium deficiency has become a major international problem harming human health. The staple food is an optimal and safe way to mineral supplement. Wheat, one of the main food crops in China and even in the world, is the main source of food for 35%-40% of global population, a main source for human’s calcium intake as well as an important crop of mineral element biofortification. Improving the calcium content in wheat grains through genetic improvement is considered to be the most economical, effective and sustainable measure to solve the calcium deficiency, which has aroused great concern from international scholars. This paper summarized the recent advances in the study of calcium content in wheat grains, mainly including the genetic variation, affecting factors, the relationship with related traits and regulation mechanism of calcium content in grain. Furthermore, we also put forward the direction of future research on calcium-fortified wheat, which provides solutions for accelerating the effective calcium supplementation through staple food, promoting the healthy and nutritious dietary pattern, ensuring the food security to meet the transition from “quantitative” to “qualitative” demands, improving people’s health, and reducing economic losses caused by calcium deficiency.

    Table and Figures | Reference | Related Articles | Metrics
    Research advances of cover crops and their important roles
    JIAN Shu-Lian, LI Shu-Xin, LIU Sheng-Qun, LI Xiang-Nan
    Acta Agronomica Sinica    2022, 48 (1): 1-14.   DOI: 10.3724/SP.J.1006.2022.03058
    Abstract347)   HTML72)    PDF(pc) (1301KB)(430)       Save

    In crop planting system, the influences of field weeds and soil properties on crop growth and development, yield, and quality have always been paid close attention to agriculture field. Overdose applications of chemical fertilizers and herbicides are beneficial for crop yield and well control of weeds, however, their negative impacts on soil and environment seriously restrict the sustainable development of agricultural production. Planting cover crops have been considered as a novel strategy to achieve sustainable agricultural development, which can help to control weeds, reduce nitrogen application, and improve soil quality. We summarize the current research advance progress of cover crops and their application in crop cultivation, including the origin and development process, main types, functions, and cropping systems of cover crops, in order to provide a theoretical basis for the research and application of cover crops in agriculture production in China.

    Table and Figures | Reference | Related Articles | Metrics
    Characteristics of post-anthesis carbon and nitrogen accumulation and translocation in maize cultivars with different low nitrogen tolerance
    WU Ya-Wei, PU Wei, ZHAO Bo, WEI Gui, KONG Fan-Lei, YUAN Ji-Chao
    Acta Agronomica Sinica    2021, 47 (5): 915-928.   DOI: 10.3724/SP.J.1006.2021.03033
    Abstract321)   HTML17)    PDF(pc) (1959KB)(416)       Save

    To understand the suitable amount of nitrogen (N) application and the potential of increasing yield and improve efficiency for the maize cultivars with different low N tolerance. The experiment was setting from 2017 to 2019, the low-N tolerant cultivar ‘Zhenghong 311 (ZH311)’ and the low-N sensitive cultivar ‘Xianyu 508 (XY508)’ were selected and four N application rates (0 kg hm-2, 150 kg hm-2, 300 kg hm-2, and 450 kg hm-2) were set to investigate the effects of N level on carbon (C) and N accumulation and translocation in the later growth stage of different maize cultivars. The results showed that in low N environment, maize increased the C and N translocations of pre-silking to the grain to ensure the yield. Increasing the N fertilizer applications could improve the contribution rates of dry matter and carbohydrate to grain yield. Compared with XY508, ZH311 had higher accumulations of plant dry matter, N and non-structural carbohydrate (NSC) of pre- and post-silking, and higher contribution rates of dry matter, N and accumulations to grain yield of post-silking, so it had higher grain yield. There was no significant difference between cultivars in the rate of dry matter, N and NSC translocation of pre-silking. In the face of low N stress, ZH 311 not only ensured the sufficient C and N translocations of pre-silking to the grain, but also maintained a higher capacity of assimilate accumulation to affect the yield formation.

    Table and Figures | Reference | Related Articles | Metrics
    Research progress on traits and assessment methods of stalk lodging resistance in maize
    ZHAO Xue, ZHOU Shun-Li
    Acta Agronomica Sinica    2022, 48 (1): 15-26.   DOI: 10.3724/SP.J.1006.2022.03055
    Abstract272)   HTML41)    PDF(pc) (959KB)(399)       Save

    Maize stalk lodging causes yield loss, decreases grain quality, increases harvest costs, and makes it impossible for grain dehydration after physiological maturity which limits mechanical grain harvest. Previous researches have been conducted to study the traits related to stalk lodging, including morphological and anatomical traits, chemical constituents of the plant and internode. However, there exist some disagreements, and lack quantitative studies on stalk lodging resistance. In this study, we review the evaluation methods and indicators of stalk lodging resistance, the determination methods of mechanical properties as well as analysis methods of stalk lodging related traits and some factors that may have effects on the results. Furthermore, we put forward the existing problems in previous researches on traits and evaluation indicators related to stalk lodging resistance and the contents need to be given further attention. These results provide a reference for further study of maize stalk lodging resistance traits and evaluation methods, lodging resistance breeding and optimization of cultivation measures.

    Table and Figures | Reference | Related Articles | Metrics
    Genome-wide association study of nitrogen use efficiency related traits in common wheat ( Triticum aestivum L.)
    JIN Yi-Rong, LIU Jin-Dong, LIU Cai-Yun, JIA De-Xin, LIU Peng, WANG Ya-Mei
    Acta Agronomica Sinica    2021, 47 (3): 394-404.   DOI: 10.3724/SP.J.1006.2021.01024
    Abstract387)   HTML26)    PDF(pc) (3110KB)(374)       Save

    Nitrogen application plays an important role in plant growth and development. Exploring genetic loci related to nitrogen use efficiency is of great significance for improving wheat yield and reducing environmental pollution. Root system architecture (RSA) determined the composition of plant root system, and significantly affected by nitrogen level. Under different nitrogen levels (deficiency and normal), 160 winter wheat accessions from the Huanghuai valley and Northern winter wheat region were counted for their root architecture-related traits (total root length, total root surface area, total root volume, average root diameter, and root tip number). Genotype was analyzed using 660K SNP (single nucleotide polymorphism) data. Genome-wide association study (GWAS) was employed to identify the relevant loci for nitrogen use efficiency. A total of 34 associated loci were detected, which explained 6.9%-15.4% of the phenotypic variation. These loci distributed on all chromosomes and mainly centered on chromosomes 1A, 2B, 3B, 5B, 6A, 6B, and 7A, respectively. Among the loci detected in this study, 11 loci overlapped or were close to the reported ones, while the other 23 might be novel loci. In addition, we explored a candidate gene encoding the E3 ubiquitin ligase. This study is of great significance for understanding the genetic mechanism of nitrogen utilization and breeding high-yield wheat varieties.

    Table and Figures | Reference | Related Articles | Metrics
    Effect of OsPAL2;3 in regulation of rice allopathic inhibition on barnyardgrass ( Echinochloa crusgalli L.)
    LI Lan-Lan, MU Dan, YAN Xue, YANG Lu-Ke, LIN Wen-Xiong, FANG Chang-Xun
    Acta Agronomica Sinica    2021, 47 (2): 197-209.   DOI: 10.3724/SP.J.1006.2021.02034
    Abstract332)   HTML36)    PDF(pc) (13621KB)(362)    PDF(mobile) (13621KB)(37)    Save

    Phenylalanine ammonia-lyase (PAL, EC 4.3.1.5) is the key enzyme in regulation of the synthesis of phenolic acid allelochemicals. PAL gene in rice belongs to a multigene family. In allelopathic accession rice PI312777 and non-allelopathic rice accession Lemont, the promoter sequences of the same PAL gene member were different, and there was the largest difference in OsPAL2;3 and OsPAL2;4 gene promoter sequence. Gene promoter of OsPAL2;3 from PI3127777 showed higher activity than the corresponding promoter from Lemont. Overexpression of OsPAL2;3 in PI312777 and Lemont resulted in increasing allelopathic inhibition on barnyardgrass (Echinochloa crusgalli L.), and the inhibitory ratios was increased by 11.11% in PI312777 and 5.56% in Lemont. Gene expression level of OsPAL2;3, OsC4H, OsCCA, OsCOL, and OsOMT was up-regulated in the OsPAL2;3-overexpressed transgenic rice compared with that of wild-type rice, and the contents of protocatechuic acid and vanillic acid were also increased. The results from Co-IP combined with mass spectrometry showed that transketolase, carbonic anhydrase, fructose-bisphospate aldolase isozyme, ATP synthase subunit alpha and ATP synthase subunit beta were interacted with OsPAL2;3 protein, resulting in regulating the phenylalanine pathway in rice. Our study indicated that the transcriptional activity of OsPAL2;3 contributed to the alleloapthic activity between PI312777 and Lemont, OsPAL2;3 was interacted with a couple of proteins to jointly regulate the synthesis of phenolic acids, and OsPAL2;3 could be considered as a candidate gene to improve the allelopathy of rice in breeding.

    Table and Figures | Reference | Related Articles | Metrics
    Development and identification of transgenic rapeseed with a novel gene for glyphosate resistance
    LI Jie-Hua, DUAN Qun, SHI Ming-Tao, WU Lu-Mei, LIU Han, LIN Yong-Jun, WU Gao-Bing, FAN Chu-Chuan, ZHOU Yong-Ming
    Acta Agronomica Sinica    2021, 47 (5): 789-798.   DOI: 10.3724/SP.J.1006.2021.04169
    Abstract368)   HTML33)    PDF(pc) (11274KB)(357)       Save

    Glyphosate is the most widely used broad-spectrum herbicide in the world. However, at present there is no glyphosate-tolerant rapeseed variety with independent intellectual property rights in China. In the study, a novel glyphosate-resistant genes I. variabilis EPSPS was transferred to the Brassica napus pure line J9707 via the Agrobacterium tumefaciens-mediated hypocotyl method, and 126 T0-positive transgenic plants with 97.0% positive rate were generated. The T-DNA insertion with a single copy (44.8%) is dominant. The insertion locations of T-DNA in the lines of EPS-2, EPS-6, and EPS-7 were identified by inverse PCR method. The stability of the T-DNA insertion in these lines were further confirmed by insertion-specific PCR in their T0 to T3 plants. The gene expression analysis revealed that the I. variabilis EPSPS gene and its protein was stably expressed in different generations of transgenic lines in RNA and protein levels. Treatments with different doses of glyphosate indicated that the lines of EPS-1, EPS-2, EPS-5, EPS-6, and EPS-7 could tolerate four times of the recommended dose of glyphosate in production. Thus, the novel glyphosate-tolerant rapeseed lines generated in the present study will lay the foundation for the herbicide- tolerance rapeseed breeding in China.

    Table and Figures | Reference | Related Articles | Metrics
    Seedling root characteristics and drought resistance of wheat in Shanxi province
    ZHAO Jia-Jia, QIAO Ling, WU Bang-Bang, GE Chuan, QIAO Lin-Yi, ZHANG Shu-Wei, YAN Su-Xian, ZHENG Xing-Wei, ZHENG Jun
    Acta Agronomica Sinica    2021, 47 (4): 714-727.   DOI: 10.3724/SP.J.1006.2021.01048
    Abstract368)   HTML20)    PDF(pc) (1008KB)(351)       Save

    Wheat root morphology at the seedling stage is the basis of root distribution at the adult stage. It is closely related to stress resistance and yield. A comprehensive understanding of the root system characteristics at seedling stage and drought resistance is of great significance for the excellent germplasm utilization and early screening of drought resistance. Using 239 wheat varieties (lines) from Shanxi province, the root traits at seedling stage and their response to water stress were evaluated. The results showed that under normal growth, Shanxi wheat had a great variation in root traits at seedling stage, with the greatest variation in landraces. The maximum root length (MRL) tended to decrease slightly with the years, while other root traits were first increased and then decreased. There were differences among the root traits in response to water stress. The total root length (TRL) is the most sensitive to water, followed by root surface area (RSA), root volume (RV) and root biomass. The maximum root length (MRL) and the average number of roots (RN) were insensitive. The drought resistance of seedling roots showed a trend of decreasing first and then increasing with the years. Landraces and varieties released from 1970 to 1979 had moderately resistance to water stress, varieties released from 1980 to 1999 had lower drought resistance, and varieties released after 2000 had the better resistance, of which the dryland varieties were the best resistance. Correlation analysis of the seedling root characteristics and yield related traits suggested that the maximum root length, total root length, root volume and root biomass were significantly positively correlated with 1000-kernel weight and yield under rain-fed conditions, and the maximum root length and root biomass were also significantly positively correlated with adult plant drought resistance. The present study suggests that the maximum root length and root biomass at the seedling stage can be used as early generation selection parameters for drought resistance and yield in dryland breeding in semi-arid areas.

    Table and Figures | Reference | Related Articles | Metrics
    Grain filling characteristics of summer maize varieties under different sowing dates in the Huang-Huai-Hai region
    XU Tian-Jun, LYU Tian-Fang, ZHAO Jiu-Ran, WANG Rong-Huan, ZHANG Yong, CAI Wan-Tao, LIU Yue-E, LIU Xiu-Zhi, CHEN Chuan-Yong, XING Jin-Feng, WANG Yuan-Dong, LIU Chun-Ge
    Acta Agronomica Sinica    2021, 47 (3): 566-574.   DOI: 10.3724/SP.J.1006.2021.03023
    Abstract248)   HTML9)    PDF(pc) (1102KB)(342)       Save

    In order to provide helpful information for maize variety selection and realizing high yield, the grain filling characteristics of 18 summer maize varieties were investigated under 6/10 (S1), 6/20 (S2), and 6/30 (S3). The results showed that: (1) There were significant differences in the final 100-grain dry weight among varieties and sowing date treatments, characterized by S1 (35.20 g) > S2 (33.45 g) > S3 (31.38 g), and the range of variation was 28.50 g (HM 1) to 36.37 g (JNK 728). (2) The average filling rate (Gave) under different sowing date treatments was S1 (0.74 g 100-grain -1d-1) > S2 (0.65 g 100-grain -1d-1) > S3 (0.57 g 100-grain -1d-1). The average grain filling rate of S1 was 0.09 g 100-grain-1d-1and 0.17 g 100-grain-1d-1 higher than that of S2 and S3, increased by 13.85% and 29.82%, respectively. The Gave of JNK 728 (0.75 g 100-grain -1 d-1) was the highest among varieties, which significantly higher than ZD 958 and XY 335 (0.58 g 100-grain-1 d-1 and 0.67 g 100-grain-1 d-1), increased by 29.31% and 11.94%. The active grain filling period (P) showed that S1 (47.85 d) < S2 (51.39 d) < S3 (55.04 d). (3) The yield under different sowing date treatments was S1 (10,628.67 kg hm-2) > S2 (10,207.65 kg hm -2) > S3 (9144.59 kg hm -2), with S1 4.12% and 16.23% higher than S2 and S3, respectively. Among them, NK 815, MC 121, JNK 729, MC 812, JNK 728 and XY 335 had relatively high yields, with an average of 10,730.56 kg hm-2, significantly higher than ZD 958 (10,080.85 kg hm-2), increased by 6.44%. (4) Correlation analysis showed that yield level was significantly and positively correlated with Gave (0.70 **) and grain weight (0.68**), and was significantly and negatively correlated with P (-0.36 **); Grain weight was significantly correlated with Gave (0.58 **). In conclusion, maize yield, grain weight and grain filling rate reduced with the sowing date delay, but P increased accordingly, early sowing properly was beneficial to achieve higher yield in Huang-Huai-Hai summer maize region, by selecting varieties such as JNK 728, JNK 729, MC 812, MC 121, NK 815, and XY 335 which characterized by suitable growing period, higher grain filling rate, suitable active grain filling period and higher yield level. JNK 728, characterized by medium-early maturity, higher grain filling rate and yield, was suitable for the later sowing conditions or areas with insufficient accumulated temperature, and could reach physiological maturity in mid-October when sowing at the end of June.

    Table and Figures | Reference | Related Articles | Metrics
    Efficient screening system of effective sgRNA for cotton CRISPR/Cas9 gene editing
    ZHOU Guan-Tong, LEI Jian-Feng, DAI Pei-Hong, LIU Chao, LI Yue, LIU Xiao-Dong
    Acta Agronomica Sinica    2021, 47 (3): 427-437.   DOI: 10.3724/SP.J.1006.2021.04178
    Abstract282)   HTML8)    PDF(pc) (4263KB)(333)       Save

    Single guide RNA (sgRNA) is one of the important elements of the CRISPR/Cas9 genome editing technology system. However, studies have shown that many sgRNAs cannot work effectively. It is worth screening to verify the effectiveness of multiple design candidate sgRNAs. Instantaneous transformation of protoplasts or leaves with complete editing vectors were used to verification of the effectiveness of sgRNA in the early stage. These methods are time-consuming and laborious, and the success rate is not high, especially for cotton with low efficiency of the protoplasmic system. In this study, target sequences were designed for GhMAPKKK2 and GhAE genes, and two vectors of GhU6-5P::MAPKKK2-sgRNA-1300, GhU6-5P::AE-sgRNA-1300 which transcibed only sgRNA were constructed and injected YZ-1 Cas9 transgenic cotton plant leaves through Agrobacterium; meanwhile, two corresponding complete CRISPR/Cas9 genome editing vectors of GhU6-5P::MAPKKK2-sgRNA-Cas9 and GhU6-5P::AE-sgRNA-Cas9 were constructed and injected YZ-1 wild-type cotton leaves with Agrobacterium. In addition, target sequences were designed for GhPDS, GhCLA1, GhMAPKKK2, and GhAE genes, respectively, and GhU6-5P-2::PDS-sgRNA- CLCrVA, GhU6-5P-2::CLA1-sgRNA-CLCrVA, GhU6-5P-2::MAPKKK2-sgRNA-CLCrVA and GhU6-5P-2::AE-sgRNA-CLCrVA virus delivery vectors were constructed and injected YZ-1 Cas9 transgenic cotton plant leaves through Agrobacterium. In the above experiments, the plants transformed with the empty vector were used as controls. The genomic DNA of the transformed cotton leaves was subjected to PCR and enzyme digestion, and the PCR products which were not completely digested were cloned and sequenced. The results showed that no mutation in target gene was detected in the cotton plants transformed with the GhU6-5P::AE-sgRNA-1300, GhU6-5P::MAPKKK2-sgRNA-Cas9 and GhU6-5P::AE-sgRNA-Cas9, and the target genes mutation in the Cas9 transgenic plants transformed with GhU6-5P::MAPKKK2-sgRNA-1300, GhU6-5P-2::PDS-sgRNA-CLCrVA, GhU6-5P-2::CLA1-sgRNA-CLCrVA, GhU6-5P-2::MAPKKK2-sgRNA-CLCrVA and GhU6-5P-2::AE-sgRNA-CLCrVA vector was uncovered. The types of mutations included base substitution, base deletion and base insertion. The results indicated that the strategy of using Cas9 transgenic plants as transformation recipients can efficiently and truly verify the effectiveness of sgRNA, which eliminated false negative results due to low transformation efficiency, and the strategy of using virus as vectors to deliver sgRNA was more efficient and accurate. The establishment of this sgRNA high-efficiency verification system provides an important technical basis for cotton functional genomics research.

    Table and Figures | Reference | Related Articles | Metrics
    Mapping and candidate gene analysis of silique number mutant in Brassica napus L.
    ZHAO Gai-Hui, LI Shu-Yu, ZHAN Jie-Peng, LI Yan-Bin, SHI Jia-Qin, WANG Xin-Fa, WANG Han-Zhong
    Acta Agronomica Sinica    2022, 48 (1): 27-39.   DOI: 10.3724/SP.J.1006.2022.04281
    Abstract187)   HTML22)    PDF(pc) (10417KB)(332)       Save

    The silique number is one of the important components of yield per plant in oilseed rape (Brassica napus L.) and the exploitation and utilization of its excellent alleles are essential to increase yield. More than hundreds of silique number QTLs have been mapped in oilseed rape, but they are difficult to be fine-mapped or cloned because of their moderate and unstable effects. A oilseed rape mutant (No.7931) was detected in previous study and it had few siliques at mature stage due to the stop growth after differentiation about 10 flowers on the top of inflorescence. A F2 segregating population consisting of 3400 individuals was constructed using this mutant and another more-silique lines No.73290. Among them, we performed BSA-seq on 30 individuals with extreme more- or less-siliques and detected three associated intervals of 0-1.1 Mb, 4.7-6.2 Mb, and 11.5-12.4 Mb on the C02 chromosome. These genomic intervals contained a total of 522 annotated genes in the reference genome DarmorV8.1, among which 235 genes had functional annotation and SNP/InDel variation. At the early stage of flower bud differentiation, the shoot apical meristems of two parents were subjected to RNA-seq, and a total of 8958 differentially expressed genes (DEGs) were detected. These DEGs were significantly enriched into 20 pathways, including carbohydrate metabolism, translation, and amino acid metabolism (highly associated with flower bud differentiation) and so on, among which 99 were located in the associated intervals. By the integration of gene functional annotation as well as sequence and expression variation analysis, a total of nine candidate genes (BnaC02g00490.1D2, BnaC02g01030.1D2, BnaC02g01120.1D2, BnaC02g00270.1D2, BnaC02g02670.1D2, BnaC02g08680.1D2, BnaC02g08890.1D2, BnaC02g09480.1D2, and BnaC02g10490.1D2) were identified, which were mainly involved in the maintenance of inflorescence meristems and the regulation of flower development. The above results lay the foundation for the following fine-mapping and cloning of the silique number mutant gene in oilseed rape.

    Table and Figures | Reference | Related Articles | Metrics
    Cloning and expression analysis of lncRNA27195 and its target gene TaRTS in wheat ( Triticum aestivum L.)
    WANG Na, BAI Jian-Fang, MA You-Zhi, GUO Hao-Yu, WANG Yong-Bo, CHEN Zhao-Bo, ZHAO Chang-Ping, ZHANG Ling-Ping
    Acta Agronomica Sinica    2021, 47 (8): 1417-1426.   DOI: 10.3724/SP.J.1006.2021.01071
    Abstract349)   HTML31)    PDF(pc) (3770KB)(329)       Save

    Long non-coding RNA (lncRNA) is a non-coding RNA length over 200 bp, which is abundant in plants. It plays important roles in plant growth, development, and stress response by regulating gene expression or protein function. In the previous study, a fertility-related lncRNA named lncRNA27195 was screened and obtained by transcriptome sequencing from the anther of wheat Photoperiod-thermo Sensitive Genic Male Sterility (PTGMS) line BS366. To investigate the function of lncRNA27195 in wheat, the lncRNA27195 gene and its target gene TaRTS were cloned from BS366. Bioinformatics analysis were performed on TaRTS. The expressions of lncRNA27195 and TaRTS in different tissues and their expression correlation between them were analyzed by qRT-PCR. Meanwhile, the expression patterns of lncRNA27195 and TaRTS under different light and temperature treatments, and methyl jasmonate (MeJA) treatments were investigated. The results showed that the TaRTS gene with 315 bp length, encoded 104 amino acids. Additionally, RTS proteins were only found as anther-specific proteins in gramineae plants. Both lncRNA27195 and TaRTS with a significantly positive correlation were highly expressed in stamens, and revealed different expression patterns in different fertility environments. The results demonstrated that the expression of lncRNA27195 and TaRTS were also regulated by light and temperature. In addition, we found that the appropriate concentration of MeJA could promote the expression of lncRNA27195 and TaRTS while SA could inhibit the expression. The results indicated that under the induction of photoperiod, temperature, and plant hormones, IncRNA27195 positively regulated TaRTS gene expression, resulting in affecting pollen development and male fertility. This study contributed to the mechanism research and production application of PTGMS wheat.

    Table and Figures | Reference | Related Articles | Metrics
    Differences in photosynthetic performance of leaves at post-flowering stage in different cultivation modes of summer maize ( Zea mays L.)
    LI Jing, WANG Hong-Zhang, LIU Peng, ZHANG Ji-Wang, ZHAO Bin, REN Bai-Zhao
    Acta Agronomica Sinica    2021, 47 (7): 1351-1359.   DOI: 10.3724/SP.J.1006.2021.03051
    Abstract320)   HTML34)    PDF(pc) (710KB)(325)       Save

    Photosynthesis plays an important role in crop growth and yield formation. Different cultivation patterns can significantly affect the photosynthetic performance of leaves at post-flowering stage in summer maize. In order to explore the effects of different cultivation modes on the photosynthetic performance of summer maize leaves at post-flowering stage, field experiments were carried out with Denghai 605 maize hybrid variety as experimental material from 2018 to 2019 in Tai’an, Shandong, China. With the local farmer management mode (FP) as the control, the super-high-yield cultivation mode (SH) and high-yield and high-efficiency cultivation mode (HH) by comprehensively optimizing the planting density, fertilizer planting and management mode were set in this study. Leaf area index, chlorophyll content, gas exchange parameters, rapid chlorophyll fluorescence induction kinetic curve (OJIP) were evaluated, which indicated significant differences in biomass of different cultivation modes at maturity stage. Compared with FP, the biomass of SH and HH increased by 27.77% and 7.43%, respectively, and the population biomass at post-flowering stage of HH increased significantly as well. Besides, the photosynthetic rate all declined in different cultivation modes, reaching the highest degree of decline on the 30th day at post-flowering stage (R1+30 d). In contrast with FP, the net photosynthetic rate (Pn) of SH and HH increased at post-flowering stage stage (R1) by 21.63% and 12.96%, respectively, and on the 30th day (R1+30 d) at post-flowering stage by 35.37% and 12.37%, respectively, which could maintain a higher level of photosynthetic capacity. In addition, these results revealed that the differences of net photosynthetic rate among the different cultivation modes were caused by non-stomatal factors. The stomatal conductance (Gs) of SH and HH was increased at the silking stage by 18.36%, 16.66%, 26.16%, and 10.74%, respectively, and while on the 30th day at post-flowering stage intercellular carbon dioxide (Ci) declined by 12.85%, 7.34%, 14.08%, and 9.75%, respectively. Compared with FP, Wk and Vj of SH and HH significantly decreased, indicating that SH and HH apparently improved the performances of both electron donor and acceptor sides of electron transport chain in PSII reaction center, the quantum yield of electron transfer (φE0), the electron transfer ability as well as the reaction center activities of PSII and the coordination between PSI and PSII. In conclusion, SH and HH effectively improved the photosystems performance, increased the net photosynthetic rate, and prolonged duration of high photosynthesis rate, resulting in the increase of the population biomass and high yield.

    Table and Figures | Reference | Related Articles | Metrics
    Phenotype analysis and gene mapping of small kernel 7 ( smk7) mutant in maize
    JIANG Cheng-Gong, SHI Hui-Min, WANG Hong-Wu, LI Kun, HUANG Chang-Ling, LIU Zhi-Fang, WU Yu-Jin, LI Shu-Qiang, HU Xiao-Jiao, MA Qing
    Acta Agronomica Sinica    2021, 47 (2): 285-293.   DOI: 10.3724/SP.J.1006.2021.03015
    Abstract540)   HTML20)    PDF(pc) (4699KB)(321)       Save

    In this study, a stable small kernel mutant, named small kernel 7 (smk7), was isolated from ethylmethane sulfonate (EMS) mutagenesis of maize inbred line B73. Compared with wild type, the smk7 mutants showed smaller kernel size, defective embryo and endosperm development and a significant decrease in 100-kernel weight. The smk7 kernels showed a low level of germination rate at 10% and cannot grow into normal plants. No significant changes were detected in protein, starch and oil content between mature wild type and smk7 kernels, but the starch grains became significantly smaller and irregular in smk7 kernels compared with wild type. The smk7 kernels could be clearly distinguished from the wild type as early as 12 days after pollination (DAP), on the basis of their smaller and emptier phenotype. Microscopic inspection of the paraffin sections revealed that the development of embryo and endosperm were delayed, and the cell wall in growth in basal endosperm transfer layers (BETL) were arrested in smk7 compared with wild type. The F2 populations with multiple backgrounds were constructed by crossing heterozygous plants (+/smk7) with several other inbred lines. Genetic analysis showed that the mutant phenotype was controlled by a single recessive gene. Based on genotyping by target sequencing (GBTS) strategy, the SMK7 was initially mapped on the short arm of chromosome 2. The fine mapping results suggested that SMK7 was located between markers RM1433917 and RM1535316, with a physical distance of 120 kb. There were eight protein-coding genes in this region. This study laid a foundation for further genes cloning and research of the SMK7 function in regulating maize kernel development.

    Table and Figures | Reference | Related Articles | Metrics
    Response of grain filling and dehydration characteristics of kernels located in different ear positions in the different maturity maize hybrids to plant density
    ZHU Ya-Li, WANG Chen-Guang, YANG Mei, ZHENG Xue-Hui, ZHAO Cheng-Feng, ZHANG Ren-He
    Acta Agronomica Sinica    2021, 47 (3): 507-519.   DOI: 10.3724/SP.J.1006.2021.03024
    Abstract241)   HTML10)    PDF(pc) (567KB)(309)       Save

    Exploring the regulation effect of planting density on grain filling and dehydration characteristics of kernels located in different ear positions in different maturity maize hybrids could provide theoretical and technical reference for high yield production for the mechanized grain harvest of spring maize in northern Shaanxi irrigation area. A field experiment was conducted using the medium maturity maize hybrid Xianyu 335 and the late maturity maize hybrid Dongdan 60 with four plant densities of 45,000 (D1), 60,000 (D2), 75,000 (D3), and 90,000 (D4) plants hm-2 from 2018 to 2019. Their grain filling and dehydration characteristics at different grain positions and their correlation with climatic factors were analyzed. The results showed that increasing density could significantly increase the grain yield with different maturity maize hybrids with both hybrids reaching the highest yield under D4 treatment in 2018; Xianyu 335 and Dongdan 60 reached the highest yield under D4 and D3 treatments in 2019, respectively, and the 2-year average highest yields were 18,739 kg hm-2 and 17,111 kg hm-2, which were 32.2% and 27.7% higher than those under D1 treatment. With the increase of plant density the grain filling rate and the grain weight decreased, and the dehydration rate accelerated of different grain positions. Under D4 plant density, the average grain filling rate of the lower and upper grains of Xianyu 335 was 0.08 g d-1 and 0.04 g d-1 higher than that of Dongdan 60, and the grain weight was 3.6 g and 1.6 g higher than that of Dongdan 60, respectively. The correlation analysis showed that the grain moisture content of different grain positions was positively correlated with the effective accumulated temperature from silking to physiological maturity stage, but the total dehydration rate was not significantly correlated with grain filling rate. The grain dehydration rate of Xianyu 335 at different grain positions was high, and the average total dehydration rate of lower and upper grains was 0.006% °C d -1 and 0.005% °C d -1 higher than that of Dongdan 60. Furthermore, compared with the lower grains, the upper kernels had lower filling rate, longer filling period, smaller grain weight, faster dehydration at the later stage, and required less accumulated temperature to reach 28% and 25% moisture content. Based on our study, the upper kernels were more sensitive to higher plant density than lower kernels. Compared with Dongdan 60, the mid-mature maize hybrid Xianyu 335 has the higher grain filling rate, larger grain weight, and faster dehydration rate in the dense planting conditions. In conclusion, properly increased plant density coupled with middle-maturity maize hybrids is a potential way to increase the grain yield for mechanized grain harvest in the irrigation area of Northern Shaanxi.

    Table and Figures | Reference | Related Articles | Metrics
    Effects of irrigating at different growth stages on kernel number of spring maize in the North China Plain
    GAO Zhen, LIANG Xiao-Gui, ZHANG Li, ZHAO Xue, DU Xiong, CUI Yan-Hong, ZHOU Shun-Li
    Acta Agronomica Sinica    2021, 47 (7): 1324-1331.   DOI: 10.3724/SP.J.1006.2021.03045
    Abstract273)   HTML29)    PDF(pc) (784KB)(308)       Save

    Drought stress is the main limiting factor for kernel setting of spring maize in the North China plain (NCP). It is important to investigate the effects of irrigation at different growth stages on kernel number, which contributes much to improve grain yield and water use efficiency of spring maize in the NCP. A three-year field experiment was conducted from 2014 to 2016. Irrigating at V6, V12, tasseling, 15 days after silking stage, and rain-fed treatments were set to evaluate the soil water change, ear leaf photosynthesis rate, kernel number per ear and their relationships. The results indicated that irrigating could increase kernel number in dry years, and irrigating at tasseling stage increased kernel number by 1.4%-97.0% compared with other treatments in 2015 and 2016. However, there were no significant differences among each treatment in kernel number in the rainy year of 2016. Irrigating at V6 and V12 stage increased vegetative growth of spring maize, including leaf area and biomass, whereas drought stress occurring at flowering stage still reduced kernel number. In irrigating treatment at tasseling stage, vegetative growth would be inhibited by drought, thus lowing leaf area index and biomass, but ensuring water availability during silking-pollination-kernel growth stage. Moreover, irrigating at tasseling stage increased photosynthesis rate (Pn) by 5.2%-32.8% than other treatments. Regression analysis suggested that high water availability could significantly increase Pn (P = 0.0034) and kernel number (P = 0.0137), but excess rainfall (low solar radiation) had adverse effect on kernel setting. Overall, irrigating at tasseling stage in dry years was a critical management to ensure kernel number of spring maize.

    Table and Figures | Reference | Related Articles | Metrics
    Genome-wide identification and expression analysis of B-box gene family in wheat
    WANG Yan-Peng, LING Lei, ZHANG Wen-Rui, WANG Dan, GUO Chang-Hong
    Acta Agronomica Sinica    2021, 47 (8): 1437-1449.   DOI: 10.3724/SP.J.1006.2021.01077
    Abstract378)   HTML32)    PDF(pc) (3123KB)(294)       Save

    B-box (BBX) is a class of zinc finger proteins that contain one or two B-box domains and play important roles in plant growth and development. The number, gene structure and phylogenetic relationship of wheat B-box transcription factors, as well as their expression specificity in different tissues and response to abiotic stress were investigated. A total of 87 members of B-box gene family were identified from wheat genome and all contained the B-box domain. TaBBXs encoded 146 to 489 amino acids and the isoelectric points ranged from 4.32 to 10.42. Chromosome mapping showed that these genes were distributed on 18 wheat chromosomes except 1A, 1B, and 1D. Based on phylogenetic analysis, TaBBXs were divided into five subfamilies, with 0-4 introns. The members of the subfamily in the same phylogenetic tree branch in the same group had highly similar gene structures. The qRT-PCR revealed that the investigated 20 genes had different expression patterns, and most genes were highly expressed in leaves, and TaBBX10 and TaBBX39 were only highly expressed in leaves, while TaBBX74 was expressed in spikes, TaBBX43 was specifically expressed in roots. These genes showed different expression patterns under different stress. 11 genes were up-regulated after low temperature stress, 13 genes were down-regulated after ABA treatment, 10 genes were up-regulated after salt stress, and 7 genes were down-regulated after drought stress. TaBBX10, TaBBX39, TaBBX60, TaBBX67, and TaBBX74 were significantly up-regulated under two or more stresses.

    Table and Figures | Reference | Related Articles | Metrics
    Effects of planting density on lodging resistance and grain yield of spring maize stalks in Guizhou province
    ZHENG Ying-Xia, CHEN Du, WEI Peng-Cheng, LU Ping, YANG Jin-Yue, LUO Shang-Ke, YE Kai-Mei, SONG Bi
    Acta Agronomica Sinica    2021, 47 (4): 738-751.   DOI: 10.3724/SP.J.1006.2021.03044
    Abstract321)   HTML16)    PDF(pc) (640KB)(291)       Save

    The objective of this study was to clarify the changes of spring maize stalk characteristics and yield and their relationship under the dense planting conditions, and it provides theoretical basis and practical guidance for high yield of spring maize dense planting in Guizhou province. The field experiments were carried out to study the effect of planting density on spring maize stalk morphology and mechanical properties, empty stalk rate, lodging rate and grain yield using Guizhou's widely planted maize variety Xianyu 1171 and Xinzhongyu 801 with six density 3×104, 4.5×104, 6.0×104, 7.5×104, 9.0×104, 10.5×104 plants hm-2 from 2018 to 2019. The results were as follows: (1) Plant height and ear height of spring maize increased first and then decreased with the increase in density; the third node length increased the most after densification, the third node's dry weight per stem length, puncture strength and flexural strength, the seventh nodal thickness, dry weight and cross-sectional area decreased the most; the density had no significant effect on the flatness of the cross-sectional area of the stem. Compared with the varieties, Xianyu 1171 internode length, the 3rd and 5th internode dry weight and the 3rd node puncture strength were significantly higher than Xinzhongyu 801. The 7th node dry weight, internode thickness, dry weight per stem length, the cross-sectional area, cross-sectional flatness and flexural strength of internodes were significantly lower than that of Xinzhongyu 801. (2) Lodging rate and empty shot rate increased with the increase in density. After densification, the lodging rate of Xianyu 1171 was significantly higher than that of Xinzhongyu 801, and the rate of empty shot was significantly lower than that of Xinzhongyu 801. (3) The yield increased first and then decreased with the increase in density. Xianyu 1171 and Xinzhongyu 801 had the highest yields at 93,000 plants hm-2 and 86,000 plants hm-2, respectively. After densification, the yield of Xianyu 1171 was higher 10.28% than that of Xinzhongyu 801, and the number of effective panicles and grains per panicle were higher. (4) Correlation and multiple regression analysis showed that plant height, ear height and lodging rate were significantly positively correlated, and internode thickness and dry matter per stalk length had a significant positive effect on corn stalk bending resistance. The yield was closely related to stalk traits, and plant height had the greatest positive effect on yield. It can be seen that the lodging resistance and grain yield of different spring maize stalks were different in response to density. After the densification of Xinzhongyu 801, the internodes of the stalks were short and thick, the dry weight per stalk length was larger, and the lodging resistance ability was stronger. Because Xianyu 1171 had a lower empty stem rate than Xinzhongyu 801 under high density, it had a higher effective ear number and grain number per ear, the yield was higher under high density. Considering the culm traits and yield, the suitable density of Xianyu 1171 and Xinzhongyu 801 in Guizhou were 90,000 plants hm-2 and 85,000 plants hm-2, respectively.

    Table and Figures | Reference | Related Articles | Metrics
    Effects of planting density and fertilization on dry matter accumulation, yield and water-fertilizer utilization of dryland potato
    LIU Yan-Lan, GUO Xian-Shi, ZHANG Xu-Cheng, MA Ming-Sheng, WANG Hong-Kang
    Acta Agronomica Sinica    2021, 47 (2): 320-331.   DOI: 10.3724/SP.J.1006.2021.04100
    Abstract336)   HTML19)    PDF(pc) (836KB)(286)       Save

    It is important to increase potato production and the natural resource utilization efficiency in dryland farming system. A field experiment was conducted using Longshu 10 with three planting modes from 2017 to 2019, including farmer mode (CK), the mode with high yield and efficiency (YE), and higher yield mode (HY). The leaf area index (LAI), SPAD, photosynthetic rate, accumulation and remobilization of dry matter, water use efficiency (WUE) and fertilizer use efficiency (FUE) was investigated. The results showed that LAI and SPAD were increased in YE and HY compared to CK, and it was more significant in 2017 when there was less rainfall. Meanwhile, less reduction in LAI and SPAD after tubers enlargement resulted in an increase of canopy photosynthetic rate by 29.9%, 34.7% (in 2018 and 2019), and 40.2%, 50.5% (in 2018 and 2019) during the expanding stage and starch accumulation stage, respectively. Average aboveground dry matter in YE and HY was higher than CK by 123.1% and 118.5% in the enlargement stage due to higher LAI and photosynthetic rate. The contribution rate of assimilation after potato tuber enlargement in YE and HE was higher than CK by 22.56% and 19.29%, resulting in an average potato production increase of 47.93% and 47.78%, and average water use efficiency increased by 77.59% and 75.85%, respectively. YE and HY advantaged in tuber production and income improvement. Compared with CK, the net income increased by 7330.3 Yuan hm-2 and 6024.6 Yuan hm-2 in 2017 to 2019, respectively. The accumulation of N, P, and K was significantly enhanced due to large population canopy and high plant biomass accumulation. Compared to CK, N and P use efficiency, and the harvest index of N and P was increased under YE mode by 15.21%, 17.20% and 3.85%, 7.79%, respectively, and the N use efficiency was increased by 12.37% under HY mode. WUE, N, and P use efficiency of YE mode was higher than HY by 2.05%, 2.53%, and 23.41%, respectively, and the net income increased by 1305.7 Yuan hm-2. Therefore, replacement of slow-release urea with organic manure by 40% and improvement of planting density with 60,000 plants hm-2 in YE mode potentially increased in water use efficiency, nutrient use efficiency, high canopy photosynthetic rate maintenances, and remobilization of dry matter from stem and leaf to tubers. In conclusion, YE as a high tuber production and resource use efficiency planting mode, is recommended in semi-arid areas with black-film mulched potato cultivation regime.

    Table and Figures | Reference | Related Articles | Metrics
    Research progress on genetic regulatory mechanism of seed color in soybean ( Glycine max)
    QIU Hong-Mei, CHEN Liang, HOU Yun-Long, WANG Xin-Feng, CHEN Jian, MA Xiao-Ping, CUI Zheng-Guo, ZHANG Ling, HU Jin-Hai, WANG Yue-Qiang, QIU Li-Juan
    Acta Agronomica Sinica    2021, 47 (12): 2299-2313.   DOI: 10.3724/SP.J.1006.2021.14022
    Abstract288)   HTML43)    PDF(pc) (2315KB)(281)       Save

    The color of soybean seeds is an important morphological marker and evolutionary trait. During the process of domestication, seed coat has gradually evolved from black to yellow, green, black, brown, and bicolor, and cotyledons has evolved from green to yellow. The dark seed coat contains anthocyanins, which are natural pigments with medicinal and nutritional values. Therefore, it is of great importance to study the genetic regulation mechanism of seed color for evolutionary theory, variety breeding, and practical application. The pigment content and composition of seeds result in diverse seed coat colors through complex molecular regulatory mechanisms. In this paper, we described the research progress on genetic loci, related genes, regulatory mechanisms, and flavonoid biosynthesis pathways that controlling the color of soybean seeds. Specifically, we introduced the 9 classical genetic loci I, R, T, O, W1, K1, G, D1, D2, and related molecular markers, as well as the interactions between the loci; 22 related genes that controlling seed color, and the regulatory mechanisms of some allelic variants; as well as the physiological functions of the flavonoid biosynthesis pathways and major metabolites involved in the related genes. The progress of researches on genetic regulation of the color of seed coat, seed hilum, and cotyledon in soybean was reviewed, in addition the regulatory network was mapped with genetic loci, genes, allelic regulatory mechanisms, and flavonoid metabolic pathways, in order to provide references for the quality of seed appearance and genetic improvement of anthocyanin components.

    Table and Figures | Reference | Related Articles | Metrics
    Genome-wide association study of β-glucan content in barley grains
    GENG La, HUANG Ye-Chang, LI Meng-Di, XIE Shang-Geng, YE Ling-Zhen, ZHANG Guo-Ping
    Acta Agronomica Sinica    2021, 47 (7): 1205-1214.   DOI: 10.3724/SP.J.1006.2021.01074
    Abstract431)   HTML71)    PDF(pc) (2090KB)(275)       Save

    β-glucan is an important trait in barley, as its content greatly affects the quality in the applications of malting, feeding, and food. Although the genes associated with β-glucan synthesis have been reported, genetic regulation of β-glucan accumulation in barley grains is still unclear. In this study, genome-wide association study (GWAS) with mixed linear model (MLM) and general linear model (GLM) was performed to analyze the grain β-glucan content of 119 barley germplasms collected from worldwide previously, which were planted at two plots with certain differences in soil and climate conditions. The results showed β-glucan content in barley grains was significantly different in genotypes and the heritability of β-glucan was 73.9% in two environments. There were eight and 40 loci for grain β-glucan content detected by MLM and GLM, respectively. A total of 44 loci were obtained by combining the same loci of the two models. HORVU5Hr1G022710 gene identified in both models and sites was considered as a putative candidate gene significantly associated with β-glucan content. Significantly positive correlation was detected between grain β-glucan content and the number of favorable alleles in both models. In addition, 10 enzymatic genes related to sugar synthesis, transport and decomposition were identified based on gene annotations. These genes may significantly relate to β-glucan synthesis, accumulation and hydrolysis. The results provided a new insight into the genetic regulation of β-glucan accumulation and laid a foundation for the genetic improvement breeding of barley seed β-glucan.

    Table and Figures | Reference | Related Articles | Metrics
    Effects of nitrogen fertilizer in whole growth duration applied in the middle and late tillering stage on yield and quality of dry direct seeding rice under “solo-stalk” cultivation mode
    ZHAO Jie, LI Shao-Ping, CHENG Shuang, TIAN Jin-Yu, XING Zhi-Peng, TAO Yu, ZHOU Lei, LIU Qiu-Yuan, HU Ya-Jie, GUO Bao-Wei, GAO Hui, WEI Hai-Yan, ZHANG Hong-Cheng
    Acta Agronomica Sinica    2021, 47 (6): 1162-1174.   DOI: 10.3724/SP.J.1006.2021.02052
    Abstract245)   HTML10)    PDF(pc) (712KB)(274)       Save

    In a rice-wheat cropping system, dry direct seeding rice growth was directly affected by harvest dates of the previous crop of wheat, the return of full wheat straw to the field, and the poor quality of tillage and land preparation. A “solo-stalk” cultivation mode with main stem panicles by late sowing dates, large sowing rates and high basic seedlings was commonly used in dry direct seeding. However, the nitrogen fertilizer management of high-quality and high-yield dry direct-seeding rice for the “solo-stalk” cultivation mode was still lacking in systematic research. With high-quality japonica rice Nanjing 9108, 380×104 hm-2 basic seedlings were realized by mechanical dry direct seeding method. The leaf age treatments of 6, 7, 8, 9, and 10 leaf age and nitrogen application amount treatments of 180 and 225 kg hm-2 were designed with accurate quantitative nitrogen management (total nitrogen was 270 kg hm-2, base fertilizer:tiller fertilizer:spike fertilizer = 3.5:3.5:3.0) at basic seedlings of 380×104 and 300×104 hm-2 as the control. Then dry direct seeding rice yield and quality were systematically determined and compared with the control and “solo-stalk” cultural method with nitrogen fertilizer in whole growth duration applied in middle and late tillering stage. The results showed that rice yield showed a trend of first increased and then decreased with nitrogen application at bigger leaf age. Rice yield was significantly higher than other treatments when applying nitrogen fertilizer at the 8-leaf stage, and the yield was further improved with the increase of nitrogen application amount. Compare with the controls, nitrogen fertilizer in whole growth duration of 180 kg N hm-2 applied one time at 8-leaf stage could significantly increase rice yield by 5.10% and 8.65%, and reduced nitrogen fertilizer by 33.3%, whereas nitrogen fertilizer in whole growth duration of 225 kg N hm-2 applied two time at 8-leaf stage and 7 days later could significantly increase rice yield by 7.46% and 11.09%, and reduced the nitrogen by 16.7%. The reason was that, compared with the control, seed setting rate and 1000-grain weight, effective panicle number was significantly increased resulting in the increasing total spikelet amount per hectare and yield on the basis of maintaining larger panicle type. With nitrogen applied at bigger leaf age, the head rice rate, chalkiness and protein content of rice revealed an increasing trend, but the amylose content and taste value of rice showed a decreasing trend. Compare to the two controls, the processing quality of rice with the head rice rate was increased by 0.67%-2.23% with nitrogen fertilizer in whole growth duration applied at 8-leaf age; the appearance quality was improved with the chalkiness decreased by 3.6%-14.5%; the nutrition quality was better with protein content increased by 3.03%-14.08%; the cooking and eating quality showed a tendency of getting better with amylose content decreased by 4.23%-10.95%; and there was no insignificant difference in taste value. In conclusion, nitrogen fertilizer in whole growth duration applied at suitable leaf age in the middle and late tillering stage could improve the quality and increase the yield of dry direct seeding rice under “solo-stalk” cultural method caused by late sowing dates, large sowing rate, and high basic seedlings in a rice-wheat cropping system.

    Table and Figures | Reference | Related Articles | Metrics
    Integrated analysis between folate metabolites profiles and transcriptome of panicle in foxtail millet
    MA Gui-Fang, MAN Xia-Xia, ZHANG Yi-Juan, GAO Hao, SUN Zhao-Xia, LI Hong-Ying, HAN Yuan-Huai, HOU Si-Yu
    Acta Agronomica Sinica    2021, 47 (5): 837-846.   DOI: 10.3724/SP.J.1006.2021.04173
    Abstract365)   HTML21)    PDF(pc) (2043KB)(274)       Save

    Folate (FA) is an important donor for energy metabolism, amino acid and nucleic acid synthesis, and participates in the intracellular carbon unit transfer reaction. In previous study, we found that folate content in panicle of foxtail millet was higher than other cereal crops, but the composition characteristics of folate metabolites are still unclear. In this study, in order to explore the expression patterns of folic acid components and folic acid metabolism pathway genes and their correlation with variable shear, and to predict the protein interaction network of folic acid synthesis pathway genes, folate metabolome was performed on three panicle development stages using the middle part of the ‘Jingu 21’ panicles as the experimental materials by RNA-seq. The results showed that the total folate content decreased with panicle development stage, and the contents of 5-methyl tetrahydrofolate (5-M-THF) and 10-formyl folate (10-F-FA) were the main components of panicle development. The expression pattern analysis of 17 key genes of folate synthesis can be divided into two groups during the panicle development in foxtail millet. The alternative splicing showed that the 16 key genes for folate synthesis produced transcription start site (TSS) and transcription terminal site (TTS) during the panicle development, the number of other types of alternative splicing was different at each stage, and this specific alternative splicing affects folate content. In addition, methylation pathway, hormone signaling pathway and immune pathway related genes showed a certain correlation with different folate metabolite content, and we preliminarily hypothesized that the expression of folate synthesis related and coupling pathway genes would influence the folate content during the panicle development. The different expression of ADCS, DHFR2, and GGH may be the main reason for the influence of folate content in panicle, and could be used as key target gen 837-846es for folate biofortification of foxtail millet by genetic engineering technology in the future.

    Table and Figures | Reference | Related Articles | Metrics
    Expression pattern analysis of genes related to lipid synthesis in peanut
    XU Jing, PAN Li-Juan, LI Hao-Yuan, WANG Tong, CHEN Na, CHEN Ming-Na, WANG Mian, YU Shan-Lin, HOU Yan-Hua, CHI Xiao-Yuan
    Acta Agronomica Sinica    2021, 47 (6): 1124-1137.   DOI: 10.3724/SP.J.1006.2021.04150
    Abstract250)   HTML7)    PDF(pc) (2203KB)(269)       Save

    In order to survey the regulation patterns of genes expression in the synthesis of oil at different developmental stages in peanut seed, F18 (high-oleic medium oil peanut variety) and ‘Luhua 6’ (low-oleic acid low oil variety) were used as research materials. The expression pattern analysis of genes was performed for peanut seeds on the 10, 30, 40, and 60 DAP, respectively. The results indicated that 130, 3556, and 2783 genes were significantly differentially expressed in the two varieties (lines) on the 30, 40, and 60 DAP, respectively. GO annotation and KEGG enrichment showed that DEGs were mainly enriched in the fatty acid synthesis and photosynthetic pathways, such as FAB2, FAD2, WRI1 genes, which were involved in the accumulation of oleic acid. All the genes involved in photosynthesis pathway were photochlorophyll binding proteins and all of them were up-regulated. KEGG pathway indicated that all the genes involved in fatty acid biosynthesis pathway on the 40 DAP and 60 DAP were up-regulated. In summary, these results provide a theoretical basis for molecular study of fatty acid synthesis in the development stage of peanut seeds and offer some candidate genes as gene resources of quality improvement in peanut breeding.

    Table and Figures | Reference | Related Articles | Metrics
    Advances of QTL mapping for seed size related traits in peanut
    HUANG Li, CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang
    Acta Agronomica Sinica    2022, 48 (2): 280-291.   DOI: 10.3724/SP.J.1006.2022.14046
    Abstract239)   HTML17)    PDF(pc) (851KB)(269)       Save

    Peanut is an important oil and economic crop in China. Currently, the domestic production of peanut remains far below the needs of consumers. Thus, further improving the yield per unit area is a crucial approach to meet the rising market demand. Seed size related traits are important agronomic traits in peanut, fundamentally contributing to improving yield per unit area. This review summarized the research progress on the regulatory pathways of seed size in plants, molecular markers, genetic linkage map construction, and QTL mapping of seed size related traits in peanut. We discussed the frontline challenges and opportunities for the coming researches of peanut seed related traits and the perspectives of yield improvement in peanut.

    Table and Figures | Reference | Related Articles | Metrics
    Cloning and potential function analysis of ascorbic peroxidase gene of hybrid wheat in seed aging
    YUE Jie-Ru, BAI Jian-Fang, ZHANG Feng-Ting, GUO Li-Ping, YUAN Shao-Hua, LI Yan-Mei, ZHANG Sheng-Quan, ZHAO Chang-Ping, ZHANG Li-Ping
    Acta Agronomica Sinica    2021, 47 (3): 405-415.   DOI: 10.3724/SP.J.1006.2021.01049
    Abstract254)   HTML12)    PDF(pc) (11431KB)(267)       Save

    In this study, the seeds of two-line hybrid wheat of BS-type BS1453/11GF5135 and its parents BS1453 (female parent) and 11GF5135 (male parent) were used as materials, and the ascorbate peroxidase gene (TaAPX) was obtained by homologous cloning in BS1453/11GF5135. The gene contains an open reading frame (ORF) of 832 bp, which encoded a total of 277 amino acids. The interaction between miRNAs and TaAPX was predicted by bioinformatics analysis, and the results showed that TaAPX may be regulated by miR396 and other miRNAs that related to stress resistance and seed viability. In addition, it was found that APX protein mainly interacted with redox-related enzymes via protein interaction prediction analysis. qPCR and enzyme activity analysis were conducted on embryos of parents and hybrid at different aging time, it was found that the expression trend of TaAPX gene in hybrid and parents were first up-regulated and then down-regulated. However, the expression of TaAPX gene in hybrid seeds peaked on the seventh day, and it began to decline in parents seeds on the fifth day. There was an antagonistic effect between miR396 and TaAPX. With the increase of aging time, the activity of APX enzyme in parents seeds showed a downtrends, while it showed a temporary downtrends on the third day in hybrid seeds, then it increased and began to decline on the ninth day. It was suggested that the ability of APX enzyme to remove peroxides in the hybrid seeds was higher than that in the parents seeds under the aging condition, that is, the anti-aging ability of hybrid was higher than that of the parents. Moreover, the regulation of seed activity by TaAPX gene was a complex multi-factor regulation process. This study laid a foundation for the further research on the molecular regulation mechanism of the seed vigor of BS type hybrid wheat.

    Table and Figures | Reference | Related Articles | Metrics
    Research advance on optimizing annual distribution of solar and heat resources for double cropping system in the Yellow-Huaihe-Haihe Rivers plain
    ZHOU Bao-Yuan, GE Jun-Zhu, SUN Xue-Fang, HAN Yu-Ling, MA Wei, DING Zai-Song, LI Cong-Feng, ZHAO Ming
    Acta Agronomica Sinica    2021, 47 (10): 1843-1853.   DOI: 10.3724/SP.J.1006.2021.13012
    Abstract382)   HTML32)    PDF(pc) (298KB)(258)       Save

    Optimizing the distribution of annual solar and heat resources is an important way to improve the annual yield and resource use efficiency without increasing input for the winter wheat-summer maize of the Yellow-Huaihe-Haihe Rivers plain. During 1980s, the researchers began to explore ways to increase the efficiency utilization of solar and heat resources from the sowing/harvest adjustment, variety selection, and intensive cropping system innovation. Based on study of matching relation between crop growth and resources, a technological approach to optimize the distribution of solar and heat resources was put forward by strengthening the high photosynthetic efficiency of “C4 maize”. Then, the winter wheat and summer maize “double late” technology, winter wheat/spring maize/summer maize, winter wheat/spring maize/summer maize/autumn maize cropping systems were established, which realized high yield and high efficient utilization of resources. In this paper, we reviewed current theoretical and regulation approaches for optimizing distribution of solar and heat resources of double cropping system in the Yellow-Huaihe-Haihe Rivers plain. Then proposed a quantitative and optimal resources distribution method for double cropping system, and set up the unified quantitative indexes for resources distribution between winter wheat and summer maize, which could provide theory support for further increasing anniversary production and resource utilization efficiency of the Yellow-Huaihe-Haihe Rivers plain.

    Table and Figures | Reference | Related Articles | Metrics
    Relationships among grain yield, rice quality and nitrogen uptake of inbred middle-ripe japonica rice in the middle and lower reaches of Yangtze River
    LIU Qiu-Yuan, ZHOU Lei, TIAN Jin-Yu, CHENG Shuang, TAO Yu, XING Zhi-Peng, LIU Guo-Dong, WEI Hai-Yan, ZHANG Hong-Cheng
    Acta Agronomica Sinica    2021, 47 (5): 904-914.   DOI: 10.3724/SP.J.1006.2021.02050
    Abstract256)   HTML11)    PDF(pc) (335KB)(255)       Save

    In 2017 and 2018, 90 and 105 inbred middle-ripe japonica rice varieties (lines) in the middle and lower reaches of Yangtze River were collected and planted in a unified way, and grain yield, rice quality and nitrogen uptake of each variety were measured at mature stage. The relationships among grain yield, rice quality and nitrogen uptake were analyzed, so as to clarify the coordinated improvement path of grain yield, rice quality and nitrogen uptake of inbred middle-ripe japonica rice in the middle and lower reaches of Yangtze River. The results indicated that grain yield was significantly positive correlated with spikelet per panicle and 1000-grain weight, and negatively correlated with percentage of filled grains. There was no significant correlation between grain yield and the number of effective panicles. Spikelet per panicle had the greatest direct path coefficient to grain yield, the number of effective panicles had the greatest limiting effect on yield formation through other yield components, and 1000-grain weight had the least limiting effect on yield formation through other yield components. The total nitrogen uptake was significantly positive correlated with the dry matter weight of stem, leaf and panicle. Path analysis showed that increasing biomass had a positive effect on increasing nitrogen uptake. Amylose and protein were significantly correlated with rice milling quality, appearance quality and taste value. Reducing amylose and protein content was beneficial to improve eating quality, but not conducive to the improvement of milling and appearance quality. The results of correlation analysis showed that there was a significant positive correlation between 1000-grain weight, spikelet per panicle, dry weight of stem, leaf and panicle. There was no significant correlation between dry weight of stem, leaf and panicle, 1000-grain weight, spikelet per panicle and amylose content, but they were significantly negatively correlated with protein content. To sum up, the selection of varieties with low amylose content among those with large biomass, suitable population spikelet and higher 1000-grain weight would be an effective way to realize the coordinated improvement of grain yield, nitrogen uptake and eating quality of inbred middle-ripe japonica rice in the middle and lower reaches of Yangtze River. However, this may not be conducive to the improvement of milling and appearance quality and it needs to be further studied.

    Table and Figures | Reference | Related Articles | Metrics
    Editorial: Strengthening the researches of genomics of bast fiber crops to promote elite allele mining and germplasm innovation
    Zhang Li-wu
    Acta Agronomica Sinica    2021, 47 (6): 993-996.   DOI: 10.3724/SP.J.1006.2021.04993
    Abstract395)   HTML42)    PDF(pc) (180KB)(253)       Save
    Reference | Related Articles | Metrics
    Transcription characteristics of wheat glutamine synthetase isoforms and the sequence analysis of their promoters
    WANG Xiao-Chun, WANG Lu-Lu, ZHANG Zhi-Yong, QIN Bu-Tan, YU Mei-Qin, WEI Yi-Hao, MA Xin-Ming
    Acta Agronomica Sinica    2021, 47 (4): 761-769.   DOI: 10.3724/SP.J.1006.2021.01046
    Abstract253)   HTML6)    PDF(pc) (3530KB)(251)       Save

    As a key enzyme for nitrogen assimilation in wheat, glutamine synthetase is grouped into two classes: cytosolic GS and chloroplastic GS (TaGS2), and cytosolic GS includes TaGS1, TaGSr, and TaGSe. In order to study the expression characteristics and regulatory mechanisms of GS isozymes in chromosome A, B, and D of heterohexaploid wheat, transcripts of TaGS isoforms were analyzed based on the third-generation sequencing technology transcriptome analysis, and 12 promoters of TaGS isozymes of Yumai 49 were cloned based on Chinese Spring genome, and the sequence of the promoters were analyzed. The results showed that TaGS1 was mainly transcribed on chromosome 6B, TaGSe and TaGSr on chromosome 4D, and TaGS2 on chromosome 2D. Furthermore, the distance from initiation codon ATG to initiation site of transcript for each promoter of TaGS was distinct. Promoter element analysis showed that the promoter of TaGS1 in 6B had more W-box, AC-I, ABRE, as-1, and methyl jasmonic response elements, the promoter of TaGSe in 4D had more stress response elements (MYB, MBS, LTR, etc.) and auxin response element, the promoter of TaGSr in 4D had more WRE3 and transcript factor response elements, the promoter of TaGS2 in 2D had more A-box, WRE3, ARE, and an AT enrichment region. In summary, the number, type and order of cis-elements of different promoters of TaGS isozymes were distinct, which provided the foundation for further study on the regulation mechanism of TaGS isozymes.

    Table and Figures | Reference | Related Articles | Metrics
    Genome-wide association study of ear cob diameter in maize
    MA Juan, CAO Yan-Yong, LI Hui-Yong
    Acta Agronomica Sinica    2021, 47 (7): 1228-1238.   DOI: 10.3724/SP.J.1006.2021.03048
    Abstract288)   HTML20)    PDF(pc) (8297KB)(250)       Save

    Maize ear cob diameter is an important trait impacting the yield of grain and cob, and the analysis of its genetic mechanism will provide a guidance for high-yield breeding. In this study, the genotypes of 309 inbred lines were identified by genotyping-by-sequencing technology. FarmCPU (fixed and random model circulating probability unification), MLMM (multiple loci mixed linear model), and CMLM (compressed mixed linear model) were used to identify significant single nucleotide polymorphisms (SNP) for ear cob diameter of Yuanyang of Henan province, Dancheng of Henan province, Yucheng of Henan province, Sanya of Hainan province in 2017 and 2019, and best linear unbiased estimate environment. A total of 12 significant SNP for ear cob diameter were detected at P < 8.60E-07. S4_29277313 was detected from Yuanyang in 2017 using FarmCPU and MLMM. The phenotypic variance explained of S1_29006330, S2_170889116, S2_2046026464, and S4_83821463 ranged from 10.23% to 14.17%, and were considered major-effect SNP. In addition, S1_29006330 was mapped in the interval of known QTL for ear cob diameter. A total of 17 candidate genes were identified. Among them, WAKL14 (wall-associated receptor kinase-like 14), transcription factor ZIM35 (zinc-finger protein expressed in inflorescence meristem 35), HMGA (HMG-Y-related protein A), histone-lysine N-methyltransferase ATX4 (Arabidopsis trithorax 4), and XTH32 (xyloglucan endotransglucosylase/hydrolase protein 32) might be important genes for ear cob diameter. The identification of four major-effect SNP and five candidate genes can provide an information for molecular marker-assisted breeding, fine mapping, and gene cloning.

    Table and Figures | Reference | Related Articles | Metrics
    Effects of elevated temperature and CO 2 concentration on growth and yield of maize under intercropping with peanut
    WANG Fei, GUO Bin-Bin, SUN Zeng-Guang, YIN Fei, LIU Ling, JIAO Nian-Yuan, FU Guo-Zhan
    Acta Agronomica Sinica    2021, 47 (11): 2220-2231.   DOI: 10.3724/SP.J.1006.2021.03018
    Abstract166)   HTML9)    PDF(pc) (2184KB)(246)       Save

    To clarify the effects of climate change on the growth development and yield of maize in the system of maize intercropping peanut, we performed the planting pattern of two rows maize intercropping and four rows peanut. Field experiments were carried out with TC (ambient temperature and ambient CO2 concentration), +T+C (elevated temperature and elevated CO2 concentration) in 2018, and TC, +TC (elevated temperature and ambient CO2 concentration), and +T+C in 2019, with two phosphorus levels of P0 (P2O5 0 kg hm-2) and P180 (P2O5 180 kg hm-2), respectively. The effects of elevated temperature and CO2 concentration on growth, dry matter accumulation and distribution, photosynthesis and yield of intercropping maize were studied. Results were as follows: (1) Compared with TC, the numbers of days from emergence to silking, silking to maturity, and emergence to maturity of intercropping maize under +TC were shortened respective by 4, 2, and 6 days. Compared with +TC, the number of days from emergence to silking of intercropping maize under +T+C was shortened by three days, while the numbers of days from silking to maturity, and emergence to maturity were increased by five days and two days. Compared with TC, the number of days from emergence to silking, and emergence to maturity of intercropping maize under +T+C was shortened by 4-7 days and 2-4 days, respectively; and the number of days from emergence to maturity was extended by 1-4 days. (2) The leaf area, net photosynthetic rate, and leaf area duration of intercropping maize were +T+C>+TC>TC before silking, +T+C>TC>+TC from silking to milk stage, and +T >+T+C>+TC after milk stage. Compared with TC, ear grain number and 100-grain weight of intercropping maize under +T+C were increased by 4.14%-65.70% and 1.70%-14.0%, respectively. (3) Compared with TC, the dry matter of intercropping maize at maturity stage increased by 7.39%-21.30% and the yield increased by 19.18%-28.07% under +TC. The dry matter and yield of intercropping maize increased by 10.0%-57.7% and 4.41%-52.00% under +T+C, respectively. The grain yield of intercropping maize was improved by applying phosphorus after increasing temperature and CO2 concentration. These results indicated that elevated temperature and CO2 concentration could promote dry matter accumulation and grain yield improvement by increasing net photosynthetic rate, leaf area index, and leaf area duration of intercropping maize at early growth stage, shortening vegetative growth period, prolonging grain filling time, and increasing ear grain number and grain weight per panicle. Elevated temperature and CO2 concentration had mutual promoting effect on the growth of intercropping maize before silking stage, while increasing CO2 concentration could make up for the inhibiting effect of increasing temperature on the growth of intercropping maize after silking.

    Table and Figures | Reference | Related Articles | Metrics
    Molecular detection of G1 marker for orange rust resistance and analysis of candidate resistance WAK gene in sugarcane
    WANG Heng-Bo, CHEN Shu-Qi, GUO Jin-Long, QUE You-Xiong
    Acta Agronomica Sinica    2021, 47 (4): 577-586.   DOI: 10.3724/SP.J.1006.2021.04131
    Abstract321)   HTML35)    PDF(pc) (7876KB)(245)       Save

    Sugarcane orange rust is an important fungal disease caused by Puccinia kuehnii Butler, which could lead to a reduction in sugarcane production and sugar content and cause serious losses to the sugarcane industry in worldwide. In this study, the molecular marker G1 was used to detect orange rust resistance genes in cultivars, ancestral species and the related genus of Saccharum in the world. The representative amplified bands were cloned, sequenced, functionally annotated, and clustered, and the origin and evolution of resistance genes was then analyzed. The results showed that 83 and 34 were detected with G1 marker, accounting for 66.9% and 67.4% in 124 Chinese and 46 foreign sugarcane cultivars, respectively. Among 34 sugarcane ancestral species and the related genus of Saccharum, 17 were detected by G1 marker, accounting for 50%, of which the highest percentage (100%) was in Saccharum spontaneum. Functional annotation revealed that G1 target gene encoded a wall-associated receptor-like kinase (WAK), and three proteins with high similarity were identified from the haploid proteome database of sugarcane cultivars. These proteins all contain the extracellular domain, transmembrane domain and intracellular domain with kinase activity of typical cell wall receptor structures. Phylogenetic analysis of nucleotide sequences clearly showed the origin and evolution of the candidate resistance WAK genes. Specifically, the WAK genes amplified by G1 marker could be divided into three groups. The first group is from S. spontaneum and Saccharum robustum. The second group is from S. robustum, Saccharum officinarum and Narenga porphyrooma. The third group is from S. spontaneum, S. robustum, Saccharum sinense and cultivars. These results provided an important support for breeding of sugarcane cultivars resistant to orange rust, and lay a foundation for further analysis of molecular mechanism of resistance genes.

    Table and Figures | Reference | Related Articles | Metrics
    Identification of gene co-expression modules of peanut main stem growth by WGCNA
    WANG Ying, GAO Fang, LIU Zhao-Xin, ZHAO Ji-Hao, LAI Hua-Jiang, PAN Xiao-Yi, BI Chen, LI Xiang-Dong, YANG Dong-Qing
    Acta Agronomica Sinica    2021, 47 (9): 1639-1653.   DOI: 10.3724/SP.J.1006.2021.04223
    Abstract342)   HTML44)    PDF(pc) (2038KB)(236)       Save

    This study was investigated the difference of transcriptome using three different peanut varieties with high main stem by RNA-seq. Transcriptomics combined with weighted gene co-expression network analysis (WGCNA) was used to explore the hub genes related to main stem growth and the molecular mechanisms of morphological formation of peanut stems. Results showed that 5872 differential expressed genes (DEGs) were detected in the Df216 and Huayu 33 comparation group, while 6662 DEGs were detected in the Df216 and Shanhua 108 comparation group. GO analysis suggested that these DEGs were mainly involved in molecular function and biological process, including the primary and secondary cell wall organization and biogenesis, phenylpropanoid biosynthetic and metabolic process, lignin biosynthetic process, and cellulose synthase activity, respectively. There were 33 modules were identified by WGCNA, among which five modules (Grey60, Cyan, Darkolivegreen, Brown, and Blue) were highly significant association with main stem height. According to the connectivity of genes in modules, caffeoyl-CoA O-methyltransferase, transcription factorATAF2, WAT1 (walls are thin1), and GDSL esterase/lipase were the hub genes, respectively. The results of hub gene networks by weighted values indicated that coumaroylquinate 3’-monooxygenase, 4-coumarate-CoA ligase, shikimate O-hydroxycinnamoyltransferase, rapid alkalinization factor,COBRA-like protein, and zinc finger protein had high connections with ADRL3Lin the Grey60 module, while β-1,4-galactosyltransferase, LRR receptor-like serine/threonine-protein kinase, pectin acetylesterase, leucine-rich repeat extensin-like protein had high connections with TZB0A2 in the Brown module. The identification of co-expression modules and their hub genes, and the analysis of gene function and gene networks of key genes will be helpful for revealing the genetic basis of the main height in peanut.

    Table and Figures | Reference | Related Articles | Metrics
    Comparison of tolerances to nitrogen fertilizer between compact and loose hybrid indica rice varieties
    YANG Zhi-Yuan, SHU Chuan-Hai, ZHANG Rong-Ping, YANG Guo-Tao, WANG Ming-Tian, QIN Jian, SUN Yong-Jian, MA Jun, LI Na
    Acta Agronomica Sinica    2021, 47 (8): 1593-1602.   DOI: 10.3724/SP.J.1006.2021.02036
    Abstract273)   HTML12)    PDF(pc) (546KB)(233)       Save

    To explore the tolerances of compact hybrid rice (CHR) and loose hybrid rice (LHR) varieties to nitrogen fertilizer, three split-plot designed experiments were applied with main plot of four rice varieties (Longliangyou 1206, CHR; Y Liangyou 1, CHR; Yixiangyou 2115, LHR; and Fyou 498, LHR), and the sub-plot contained four N application rates (0 kg hm-2, N0; 90 kg hm-2, N90; 150 kg hm-2, N150; and 210 kg hm-2, N210). The results revealed that CHR was more tolerant to high nitrogen than LHR, and when the applied nitrogen was not higher than 150 kg hm-2, the yields of LHR were higher than those of CHR. When the applied nitrogen reached 210 kg hm-2, the single panicle weight advantage of CHR increased to 14.46%, while the effective panicle disadvantage decreased to 12.46%, then the yield of CHR was 1.43% higher than that of LHR. Partial least squares regression analysis showed that peak seedlings, growth rate from elongation to heading stage, leaf area index (LAI) and extinction coefficient (K-value) which characterized the degree of leaf stretching were positive contributions to CHR and LHR. The effective panicle rate at elongation and heading stages contributed negatively to the yield, but had the opposite effect on the agronomic efficiency of nitrogen fertilizer. Except K-value, the other indicators contributed similarly to yield, as did the agronomic efficiency of nitrogen fertilizer. Under N0 and N90, LAI and K-values of CHR were smaller than LHR, and the radiation interception rate was also lower than LHR. When nitrogen applied increased from 150 kg hm-2 to 210 kg hm-2, the K-value of CHR increased significantly, while LHR almost unchanged, resulting in the higher radiation interception rate at heading stage of CHR than LHR, indicating that the leaf stretching of CHR was sensitive to high nitrogen.

    Table and Figures | Reference | Related Articles | Metrics
    Effects of nitrogen application rate on photosynthetic characteristics and yield of mung bean under the proso millet and mung bean intercropping
    DANG Ke, GONG Xiang-Wei, LYU Si-Ming, ZHAO Guan, TIAN Li-Xin, JIN Fei, YANG Pu, FENG Bai-Li, GAO Xiao-Li
    Acta Agronomica Sinica    2021, 47 (6): 1175-1187.   DOI: 10.3724/SP.J.1006.2021.04148
    Abstract278)   HTML22)    PDF(pc) (802KB)(231)       Save

    To explore the effect of nitrogen (N) on the leaf gas exchange, chlorophyll fluorescence, nitrogen characteristics and yield of mung bean under intercropping with proso millet, the field experiments were conducted in 2018 and 2019 using split-plot design with two cropping patterns [proso millet-mung bean intercropping (PM) and soled mung bean (SM)] and four total N fertilizer application rates [0 (N0), 45 (N1), 90 (N2), and 135 kg hm-2(N3)]. Under N application, the net photosynthetic rate (Pn) and transpiration rate (Tr) of mung bean in intercropping increased by 10.5%-24.5% and 15.2%-29.5% on average, which improved the photosynthetic characteristics. Maximum photochemical efficiency (Fv/Fm) and actual photochemical efficiency (ΦPSII) increased by 2.9%-7.8% and 11.7%-28.4%, respectively, and PSII non-photochemical quenching coefficient (NPQ) decreased by 10.3%-17.4%. The chlorophyll fluorescence parameters were improved, resulting in enhancing the ability to capture and utilize light energy, and the activity of PSII reaction center was enhanced. Leaf area per plant, N content per unit dry mass of leaves (Nmass) and N content per unit area (Narea) increased first and then decreased with the increase of N application rate. The content of Chl a and Chl b increased. Photosynthetic N-use efficiency (PNUE) decreased compared with N0. N application significantly increased the dry matter accumulation and pods of mung bean in intercropping. Under the treatment of N1, N2, and N3, 100-grain weight and yield were increased by 1.1%-6.9% and 9.3%-19.7%, respectively. In the two-year trial intercropping, the land equivalent ratio of each treatment was 1.63-2.07, indicating the yield advantage of intercropping. N application could improve the photosynthetic production capacity of mung bean in intercropping and effectively regulate the adaptive response of photosynthetic system to shading. The response of photosynthetic performance of intercropping to N fertilizer was greater than that of single-plant systems. Under the conditions of this experiment, the proso millet and mung bean intercropping model can increase land productivity, and it can be used as a planting model to promote dry farming in northwestern China. The intercropping mung bean had the best photosynthetic characteristics at 90 kg hm-2, which showed the highest yield, and the largest land equivalent ratio.

    Table and Figures | Reference | Related Articles | Metrics
    Effect of exogenous plant growth regulators on carbon-nitrogen metabolism and flower-pod abscission of relay strip intercropping soybean
    LUO Kai, XIE Chen, WANG Jin, WANG Tian, HE Shun, YONG Tai-Wen, YANG Wen-Yu
    Acta Agronomica Sinica    2021, 47 (4): 752-760.   DOI: 10.3724/SP.J.1006.2021.04129
    Abstract267)   HTML17)    PDF(pc) (303KB)(230)       Save

    Maize shading inhibited the growth of soybean at the seedling stage, reduced the number of soybean flowers and pods, and decreased the yield of soybean under maize-soybean relay strip intercropping system. To explore the effect of exogenous plant growth regulators (PGRs) on flowering, pod setting, and yield of soybean is important for relay strip intercropping soybean production. Field experiments were used one-factor randomized block design to investigate the effect of foliage spraying 6-Benzylaminopurine (6-BA), diethyl aminoethyl hexanoate (DTA-6) and uniconazole (S3307) at the beginning of flowering stage on abscission of flowers and pods, leaf carbon and nitrogen metabolism, and yield formation in relay strip intercropping soybean. The results demonstrated that spraying PRGs improved the sucrose synthetase (SS), sucrose phosphate synthetase (SPS) and invertase (Inv) activities in soybean leaves. Exogenous PGRs increased soluble sugar content in stems, leaves, and pods of soybean at the beginning of grain-filling stage, promoted soluble sugar transport from stem and leaves to pods. Exogenous PGRs increased carbon and nitrogen content and decreased the C:N ratio in soybean leaves at the beginning of podding stage. PGRs increased the carbon content, decreased nitrogen content, and increased the C:N ratio in soybean leaves at beginning of grain-filling stage. Foliar spraying PGRs increased the number of flowers and pods, reduced the abscission pod number, and decreased the ratio of pods abscission and flowers-pods abscission, the effect of DTA-6 treatments was better than others. The pods per plant and yield of soybean in 2018 and 2019 under DTA-6 treatment were increased by 25.4%, 41.3% and 32.9%, 37.6% as compared with CK, respectively. Foliar spraying PGRs increased the activities of SPS, SS, and Inv enzymes in soybean leaves, coordinated the carbon-nitrogen metabolism in soybean organs, promoted the soybean flowering and pod-setting, decreased the abscission of pods, increased the pods per plant and yield of relay strip intercropping soybean, the production increasing effect of DTA-6 were better than others.

    Table and Figures | Reference | Related Articles | Metrics

Co-sponsored:
the Crop Science Society of China
the Institute of Crop Science, CAAS
China Science Publishing & Media Ltd.
Published: Science Press
Editor-in-chief: Wan Jian-min
Associate Editors-in-Chief:
Chen Xiao-ya Yang Jian-chang Zhang Xian-long Wang Jian-kang Xu Ming-liang Liu Chun-ming Wang Dao-wen Sun Chuan-qing Ding Yan-feng Jin Wei-wei Chu Cheng-cai Cheng Wei-hong
Director of the editorial department:
Cheng Wei-hong
CN 11-1809/S
ISSN 0496-3490
Post subscription code: 82-336

WeChat
  • Started in 2013
  • Covered by SCIE
  • Open access in ScienceDirect

Editor in chief: Wan Jian-min
CN 10-1112/S
ISSN 2095-5421, 2214-5141(online)
Online published:
https://www.sciencedirect.com/journal/the-crop-journal
Submission: https://www.editorialmanager.com/cj/
E-mail: cropjournal@caas.cn
Tel: 8610-82108548

WeChat